A215521
Number T(n,k) of distinct values of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n with largest part = k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 10, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 14, 12, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 16, 17, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 1
T(4,2) = 2 = |{4!/(2!*2!), 4!/(2!*1!*1!)}| = |{6, 12}|.
T(7,4) = 3 = |{35, 105, 210}|.
T(8,3) = 5 = |{560, 1120, 1680, 3360, 6720}|.
T(11,4) = 10 = |{11550, 34650, 46200, 69300, 138600, 207900, 277200, 415800, 831600, 1663200}|.
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 2, 1, 1;
1, 3, 3, 2, 1, 1;
1, 3, 4, 3, 2, 1, 1;
1, 4, 5, 5, 3, 2, 1, 1;
1, 4, 7, 6, 5, 3, 2, 1, 1;
1, 5, 8, 9, 7, 5, 3, 2, 1, 1;
1, 5, 10, 10, 10, 7, 5, 3, 2, 1, 1;
...
-
b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)}))
end:
T:= (n, k)-> nops(b(n-k, min(k, n-k))):
seq(seq(T(n, k), k=1..n), n=1..15);
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Join[b[n, i - 1], Table[ b[n - i*j, i - 1] *i!^j, {j, 1, n/i}] // Flatten]] // Union]; T[n_, k_] := Length[b[n, k]]; Table[Table[T[n - k, Min[k, n - k]], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A309999
Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 25, 32, 35, 44, 53, 61, 72, 81, 98, 114, 130, 147, 176, 200, 229, 257, 291, 342, 387, 442, 501, 573, 642, 714, 807, 907, 1037, 1159, 1293, 1458, 1624, 1811, 2024, 2246, 2505, 2785, 3114, 3449, 3795, 4213, 4660
Offset: 0
-
g:= proc(n, i) option remember; `if`(i*(i+1)/2binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]}))
end:
a:= n-> nops(g(n$2)):
seq(a(n), n=0..55);
-
g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Union[ Binomial[n, i] #& /@ g[n - i, Min[n - i, i - 1]], g[n, i - 1]]]];
a[n_] := Length[g[n, n]];
a /@ Range[0, 55] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A165729
Number of distinct rate points of concentric permutation source codes with two initial codewords in dimension n.
Original entry on oeis.org
3, 6, 15, 27, 60, 97, 186, 335
Offset: 2
Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009
Cf.
A070289 (number of distinct rate points of an ordinary permutation source code).
A165730
Number of distinct rate points of concentric permutation source codes with three initial codewords in dimension n.
Original entry on oeis.org
4, 10, 33, 68, 207, 415, 1038, 2440
Offset: 2
Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009
A165731
Number of distinct rate points of concentric permutation source codes with four initial codewords in dimension n.
Original entry on oeis.org
5, 15, 56, 132, 517, 1202, 3888, 11911
Offset: 2
Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009
A210238
Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1, 8, 56, 56, 224, 28, 336, 336, 280, 168, 168, 840, 420, 1120, 70, 1120, 560, 168, 420, 56, 1
Offset: 1
1
2, 1
3, 6, 1
4, 12, 6, 12, 1
5, 20, 20, 30, 30, 20, 1
6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1
7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1
Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations:
3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3)
3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!) (i.e. multiplicity=6)
3!/(1!1!1!) (i.e. multiplicity=1)
-
Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* Wouter Meeussen, Mar 09 2013 *)
A213008
Triangle T(n,k) of number of distinct values of multinomial coefficients corresponding to sequence A026820 (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 10, 12, 13, 14, 1, 5, 9, 14, 16, 18, 19, 20, 1, 5, 12, 17, 21, 23, 25, 26, 27, 1, 6, 13, 21, 26, 30, 32, 34, 35, 36, 1, 6, 16, 25, 33, 37, 41, 43, 45, 46, 47, 1, 7, 19, 32, 42, 50, 54, 58, 60, 62, 63, 64
Offset: 1
Triangle T(n,k) begins:
1;
1, 2;
1, 2, 3;
1, 3, 4, 5;
1, 3, 5, 6, 7;
1, 4, 7, 9, 10, 11;
1, 4, 8, 10, 12, 13, 14;
...
Thus, for n = 7 and k = 6 there are 13 distinct values of multinomial coefficients corresponding to partitions of n = 7 into at most k = 6 parts. The corresponding number of partitions from sequence A026820 is 14. That is because partitions 7 = 4 + 1 + 1 + 1 and 7 = 3 + 2 + 2 produce the same value of multinomial coefficient 7!/(4!*1!*1!*1!) = 7!/(3!*2!*2!).
- Alois P. Heinz, Rows n = 1..45, flattened
- Katsuhisa Yamanaka, Shin-ichiro Kawano, Yosuke Kikuchi, and Shin-ichi Nakano, Constant Time Generation of Integer Partitions, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no.5, pp. 888-895, (May-2007).
- Sergei Viznyuk, C-Program for this sequence, 2012.
- Sergei Viznyuk, C-Program for sequences A026820, A070289, and A213008 (local copy), 2012.
-
b:= proc(n, i, k) option remember; if n=0 then {1} elif i<1
then {} else {b(n, i-1, k)[], seq(map(x-> x*i!^j,
b(n-i*j, i-1, k-j))[], j=1..min(n/i, k))} fi
end:
T:= (n, k)-> nops(b(n, n, k)):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, Aug 14 2012
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1}, If[i<1, {}, Join[b[n, i-1, k], Table[ Function[#*i!^j] /@ b[n-i*j, i-1, k-j], {j, 1, Min[n/i, k]}] // Flatten] // Union] ]; T[n_, k_] := Length[b[n, n, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)
A309897
Number of not unique partition coefficients of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 9, 13, 22, 33, 51, 74, 104, 142, 194, 261, 351, 464, 616, 802, 1047, 1344, 1716, 2186, 2766, 3473, 4367, 5448, 6774, 8375, 10329, 12685, 15553, 18982, 23098, 28046, 33966, 40976, 49381, 59301, 71095, 85017, 101491, 120859
Offset: 0
a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique.
We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2].
-
h := proc(n,k) option remember;
if n = 0 then return [1] elif k < 1 then return [] fi;
[h(n, k-1)[], seq(map(x -> x*k!^j, h(n-k*j, k-1))[], j=1..n/k)] end:
A309897 := proc(n) h(n, n); nops(%) - nops(convert(%, set)) end:
seq(A309897(n), n=0..48);
-
def A309897(n):
P = Partitions(n)
M = set(multinomial(x) for x in P)
return P.cardinality() - len(M)
[A309897(n) for n in range(29)]
A376821
Number of irreducible pairs of partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 3, 3, 6, 7, 8, 4, 6, 7, 12, 17, 23, 23, 31, 38, 36, 70, 71, 101, 127, 118, 145, 191, 209, 261, 309, 396, 462, 512, 652, 769, 878, 1097, 1320, 1563, 1827, 2098, 2533, 2932, 3475, 4185, 4756, 5726, 6614, 7686, 9189, 10825
Offset: 0
n | irreducible pairs of partitions of n
---+-------------------------------------
7 | (1,1,1,4), (2,2,3)
8 | (1,1,6), (3,5)
10 | (1,4,5), (2,2,6)
13 | (1,1,1,10), (6,7)
| (1,1,3,8), (2,4,7)
| (1,1,1,1,1,8), (2,2,2,7)
14 | (1,2,2,9), (3,3,8)
| (1,1,1,2,9), (3,4,7)
| (1,1,1,1,1,1,4,4), (2,2,2,2,3,3)
Comments