cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A215521 Number T(n,k) of distinct values of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n with largest part = k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 10, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 14, 12, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 16, 17, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Aug 14 2012

Keywords

Comments

Differs from A008284 first at T(11,4).

Examples

			T(4,2) = 2 = |{4!/(2!*2!), 4!/(2!*1!*1!)}| = |{6, 12}|.
T(7,4) = 3 = |{35, 105, 210}|.
T(8,3) = 5 = |{560, 1120, 1680, 3360, 6720}|.
T(11,4) = 10 = |{11550, 34650, 46200, 69300, 138600, 207900, 277200, 415800, 831600, 1663200}|.
Triangle T(n,k) begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  2,  2,  1,  1;
  1,  3,  3,  2,  1,  1;
  1,  3,  4,  3,  2,  1,  1;
  1,  4,  5,  5,  3,  2,  1,  1;
  1,  4,  7,  6,  5,  3,  2,  1,  1;
  1,  5,  8,  9,  7,  5,  3,  2,  1,  1;
  1,  5, 10, 10, 10,  7,  5,  3,  2,  1,  1;
  ...
		

Crossrefs

Columns k=1-3 give: A000012 (for n>0), A004526, A069905(n) = A001399(n-3) for n>=3.
T(2*n,n) gives: A070289.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    T:= (n, k)-> nops(b(n-k, min(k, n-k))):
    seq(seq(T(n, k), k=1..n), n=1..15);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Join[b[n, i - 1], Table[ b[n - i*j, i - 1] *i!^j, {j, 1, n/i}] // Flatten]] // Union]; T[n_, k_] := Length[b[n, k]]; Table[Table[T[n - k, Min[k, n - k]], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)

A309999 Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 25, 32, 35, 44, 53, 61, 72, 81, 98, 114, 130, 147, 176, 200, 229, 257, 291, 342, 387, 442, 501, 573, 642, 714, 807, 907, 1037, 1159, 1293, 1458, 1624, 1811, 2024, 2246, 2505, 2785, 3114, 3449, 3795, 4213, 4660
Offset: 0

Views

Author

Alois P. Heinz, Aug 26 2019

Keywords

Comments

Differs from A000009 first at n = 15: a(15) = 25 < 27 = A000009(15). There are two repeated multinomial coefficients for n = 15: 1365 = M(15;11,4) = M(15;12,2,1) and 30030 = M(15;9,5,1) = M(15;10,3,2).

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]}))
        end:
    a:= n-> nops(g(n$2)):
    seq(a(n), n=0..55);
  • Mathematica
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Union[ Binomial[n, i] #& /@ g[n - i, Min[n - i, i - 1]], g[n, i - 1]]]];
    a[n_] := Length[g[n, n]];
    a /@ Range[0, 55] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A165729 Number of distinct rate points of concentric permutation source codes with two initial codewords in dimension n.

Original entry on oeis.org

3, 6, 15, 27, 60, 97, 186, 335
Offset: 2

Views

Author

Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009

Keywords

Crossrefs

Cf. A070289 (number of distinct rate points of an ordinary permutation source code).

A165730 Number of distinct rate points of concentric permutation source codes with three initial codewords in dimension n.

Original entry on oeis.org

4, 10, 33, 68, 207, 415, 1038, 2440
Offset: 2

Views

Author

Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009

Keywords

Crossrefs

Cf. A070289, (number of distinct rate points of an ordinary permutation source code), A165729, A165731.

A165731 Number of distinct rate points of concentric permutation source codes with four initial codewords in dimension n.

Original entry on oeis.org

5, 15, 56, 132, 517, 1202, 3888, 11911
Offset: 2

Views

Author

Vivek Goyal (vgoyal(AT)mit.edu), Sep 25 2009

Keywords

Crossrefs

Cf. A070289 (number of distinct rate points of an ordinary permutation source code), A165729, A165730.

A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1, 8, 56, 56, 224, 28, 336, 336, 280, 168, 168, 840, 420, 1120, 70, 1120, 560, 168, 420, 56, 1
Offset: 1

Views

Author

Sergei Viznyuk, Mar 18 2012

Keywords

Comments

Multiplicity D(n) of multinomial coefficient M(n) is the number of ways the same value of M(n)=n!/(m1!*m2!*..*mk!) is obtained by distributing n identical balls into k distinguishable bins.
Differs from A209936 after a(21).
Differs from A035206 after a(36).
The checksum relationship: sum(M(n)*D(n)) = k^n
The number of terms per row (for each value of n starting with n=1) forms sequence A070289.

Examples

			1
2, 1
3, 6, 1
4, 12, 6, 12, 1
5, 20, 20, 30, 30, 20, 1
6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1
7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1
Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations:
3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3)
3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!)  (i.e. multiplicity=6)
3!/(1!1!1!) (i.e. multiplicity=1)
		

Crossrefs

Programs

  • Mathematica
    Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* Wouter Meeussen, Mar 09 2013 *)

A213008 Triangle T(n,k) of number of distinct values of multinomial coefficients corresponding to sequence A026820 (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 10, 12, 13, 14, 1, 5, 9, 14, 16, 18, 19, 20, 1, 5, 12, 17, 21, 23, 25, 26, 27, 1, 6, 13, 21, 26, 30, 32, 34, 35, 36, 1, 6, 16, 25, 33, 37, 41, 43, 45, 46, 47, 1, 7, 19, 32, 42, 50, 54, 58, 60, 62, 63, 64
Offset: 1

Views

Author

Sergei Viznyuk, Jun 01 2012

Keywords

Comments

Differs from A026820 after position 24.
Includes sequence A070289 when k = n.

Examples

			Triangle T(n,k) begins:
  1;
  1, 2;
  1, 2, 3;
  1, 3, 4,  5;
  1, 3, 5,  6,  7;
  1, 4, 7,  9, 10, 11;
  1, 4, 8, 10, 12, 13, 14;
  ...
Thus, for n = 7 and k = 6 there are 13 distinct values of multinomial coefficients corresponding to partitions of n = 7 into at most k = 6 parts. The corresponding number of partitions from sequence A026820 is 14. That is because partitions 7 = 4 + 1 + 1 + 1 and 7 = 3 + 2 + 2 produce the same value of multinomial coefficient 7!/(4!*1!*1!*1!) = 7!/(3!*2!*2!).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; if n=0 then {1} elif i<1
          then {} else {b(n, i-1, k)[], seq(map(x-> x*i!^j,
                  b(n-i*j, i-1, k-j))[], j=1..min(n/i, k))} fi
        end:
    T:= (n, k)-> nops(b(n, n, k)):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 14 2012
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1}, If[i<1, {}, Join[b[n, i-1, k], Table[ Function[#*i!^j] /@ b[n-i*j, i-1, k-j], {j, 1, Min[n/i, k]}] // Flatten] // Union] ]; T[n_, k_] := Length[b[n, n, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)

A309897 Number of not unique partition coefficients of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 9, 13, 22, 33, 51, 74, 104, 142, 194, 261, 351, 464, 616, 802, 1047, 1344, 1716, 2186, 2766, 3473, 4367, 5448, 6774, 8375, 10329, 12685, 15553, 18982, 23098, 28046, 33966, 40976, 49381, 59301, 71095, 85017, 101491, 120859
Offset: 0

Views

Author

Peter Luschny, Sep 06 2019

Keywords

Comments

We call (p1+p2+ ...)! / (p1!*p2!*p3! ...) a 'partition coefficient' of n if (p1, p2, p3, ...) is a partition, n = p1 + p2 + ... and denote it by P(n, p).

Examples

			a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique.
We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2].
		

Crossrefs

Programs

  • Maple
    h := proc(n,k) option remember;
    if n = 0 then return [1] elif k < 1 then return [] fi;
    [h(n, k-1)[], seq(map(x -> x*k!^j, h(n-k*j, k-1))[], j=1..n/k)] end:
    A309897 := proc(n) h(n, n); nops(%) - nops(convert(%, set)) end:
    seq(A309897(n), n=0..48);
  • SageMath
    def A309897(n):
        P = Partitions(n)
        M = set(multinomial(x) for x in P)
        return P.cardinality() - len(M)
    [A309897(n) for n in range(29)]

Formula

a(n) = A000041(n) - A070289(n).

A376821 Number of irreducible pairs of partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 3, 3, 6, 7, 8, 4, 6, 7, 12, 17, 23, 23, 31, 38, 36, 70, 71, 101, 127, 118, 145, 191, 209, 261, 309, 396, 462, 512, 652, 769, 878, 1097, 1320, 1563, 1827, 2098, 2533, 2932, 3475, 4185, 4756, 5726, 6614, 7686, 9189, 10825
Offset: 0

Views

Author

Pontus von Brömssen, Oct 05 2024

Keywords

Comments

A pair of partitions of n is irreducible if the two partitions yield the same multinomial coefficient but have no parts in common. The partitions in the pair are required to be distinct, otherwise a(0) would be 1.

Examples

			   n | irreducible pairs of partitions of n
  ---+-------------------------------------
   7 | (1,1,1,4), (2,2,3)
   8 | (1,1,6), (3,5)
  10 | (1,4,5), (2,2,6)
  13 | (1,1,1,10), (6,7)
     | (1,1,3,8), (2,4,7)
     | (1,1,1,1,1,8), (2,2,2,7)
  14 | (1,2,2,9), (3,3,8)
     | (1,1,1,2,9), (3,4,7)
     | (1,1,1,1,1,1,4,4), (2,2,2,2,3,3)
		

Crossrefs

Previous Showing 11-19 of 19 results.