cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A108197 Number of composite numbers between two successive semiprimes.

Original entry on oeis.org

0, 1, 0, 1, 0, 3, 0, 1, 0, 4, 0, 0, 1, 0, 4, 1, 1, 2, 1, 0, 1, 2, 2, 2, 2, 3, 1, 0, 0, 2, 1, 0, 0, 7, 2, 2, 2, 0, 1, 0, 0, 4, 2, 0, 4, 0, 0, 1, 0, 6, 1, 0, 1, 3, 1, 6, 0, 2, 1, 1, 4, 4, 0, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 3, 5, 1, 7, 1, 2, 0, 3, 2, 1, 1, 4, 2, 6, 1, 1, 2, 2, 0, 1, 0, 0, 1, 2, 2, 3, 1, 1, 2, 0, 1
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 15 2005

Keywords

Comments

This is to A046933 as semiprimes A001358 are to primes A000040. This is to composites A002808 as A088700 is to primes. a(A070552(i)) = 0. - Jonathan Vos Post, Oct 10 2007
a(n) = 0 if A001358(n) is in A070552. - Jonathan Vos Post, Mar 11 2007

Examples

			a(1) = 0 because between 2*2 and 2*3 there is 5 and it is not composite.
a(2) = 1 because between 2*3 and 3*3 there is 8 = 2*2*2;
a(6) = 3 because between 3*5 and 3*7 there are three composite numbers: {16, 18, 20}.
a(10) = 4 because between 2*13 and 3*11 there are four composite numbers: {27, 28, 30, 32}.
a(15) = 4 because there are four composites {40,42,44,45} between semiprime(15)=39 and semiprime(16)=46.
		

Crossrefs

Semiprime analog of A046933.

Programs

  • Maple
    with(numtheory): sp:=proc(n) if bigomega(n)=2 then n else fi end: SP:=[seq(sp(n),n=1..450)]: for j from 1 to nops(SP)-1 do ct:=0: for i from SP[j]+1 to SP[j+1]-1 do if isprime(i)=false then ct:=ct+1 else ct:=ct fi: od: a[j]:=ct: od:seq(a[j],j=1..nops(SP)-1); # Emeric Deutsch, Mar 30 2007
    A001358 := proc(nmin) local a,n ; a :=[] ; n := 1 ; while nops(a) < nmin do if numtheory[bigomega](n) = 2 then a := [op(a),n] ; fi ; n := n+1 ; od: RETURN(a) ; end: A000720 := proc(n) numtheory[pi](n) ; end: A065855 := proc(n) n-A000720(n)-1 ; end: A108197 := proc(nmin) local a,n,a001358 ; a001358 := A001358(nmin+1) ; a := [] ; for n from 1 to nops(a001358)-1 do a := [op(a), A065855(op(n+1,a001358))-A065855(op(n,a001358))-1 ] ; od; RETURN(a) ; end: A108197(100) ; # R. J. Mathar, Oct 23 2007
  • Mathematica
    terms = 105;
    cc = Select[Range[4 terms], CompositeQ] /. c_ /; PrimeOmega[c] == 2 -> 0;
    SequenceReplace[cc, {0, c___ /; FreeQ[{c}, 0]} :> Length[{c}]][[;; terms]] (* Jean-François Alcover, Mar 31 2020 *)

Formula

a(n) = A065855(A001358(n+1)) - A065855(A001358(n)) - 1. - R. J. Mathar, Oct 23 2007
a(n)=A065516(n)-1-A088700(n). - R. J. Mathar, Jul 31 2008

Extensions

Corrected and extended by Ray Chandler, Jul 07 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jul 13 2007
Further edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Jul 01 2008

A179502 Numbers k with the property that k^2, k^2+1 and k^2+2 are all semiprimes.

Original entry on oeis.org

11, 29, 79, 271, 379, 461, 521, 631, 739, 881, 929, 1459, 1531, 1709, 2161, 2239, 2341, 2729, 3049, 3491, 3709, 4021, 4349, 4561, 4691, 5021, 5281, 5851, 5879, 6301, 6329, 6829, 7559, 8009, 9151, 10069, 10099, 10151, 10529, 10891, 11719, 11959, 11969, 13799, 14051, 14159
Offset: 1

Views

Author

Zak Seidov, Jan 08 2011

Keywords

Comments

From the first 10^6 primes, 6680 are terms of the sequence.
Also, all numbers k^2+1 are twice prime, and k^2+2 are thrice prime.
The number of terms less than 10^m beginning with m = 1: 0, 3, 11, 35, 160, 759, 4668, 30319, 204439, ..., .
The number of terms less than the (10^m)-th prime beginning with m = 1: 2, 7, 33, 165, 941, 6680, 48977, 373627, ..., .

Crossrefs

n^2 are squares in A070552, which is a subsequence of A056809 (m and m+1 are semiprimes) and A001358 (semiprimes).
The sequence is a subsequence of A048161.

Programs

  • Mathematica
    fQ[n_] := PrimeQ[(n^2 + 1)/2] && PrimeQ[(n^2 + 2)/3]; Select[ Prime@ Range@ 1667, fQ] (* Robert G. Wilson v, Feb 26 2011 *)
    Select[Range[15000],PrimeOmega[#^2+{0,1,2}]=={2,2,2}&] (* Harvey P. Dale, May 12 2025 *)
  • PARI
    {n=10;for(i=1,10^4,n=nextprime(n+1);n2=n^2;if(2==bigomega(n2+1)&&2==bigomega(n2+2),print1(n,",")))}

A188059 Numbers k with the property that k, k+1 and 2*k+1 are all semiprimes.

Original entry on oeis.org

25, 34, 38, 57, 93, 118, 133, 145, 177, 201, 205, 213, 218, 298, 334, 361, 381, 394, 446, 501, 633, 694, 698, 842, 865, 878, 898, 921, 1114, 1141, 1226, 1285, 1293, 1465, 1513, 1654, 1713, 1726, 1761, 1857, 1893, 1941, 1981, 2018, 2041, 2217, 2306, 2426, 2433, 2577, 2581, 2734, 2746, 2901, 2973, 3133, 3193, 3214, 3241, 3386, 3578, 3661, 3693, 3746, 3754, 3777, 3826, 3957
Offset: 1

Views

Author

Zak Seidov, Mar 20 2011

Keywords

Comments

Numbers k such that 2k+1 is a semiprime and the sum of two consecutive semiprimes (k and k+1).

Examples

			25 is a term: k = 25 = 5*5, k+1 = 26 = 2*13, 2k+1 = 51 = 3*17.
		

Crossrefs

Cf. A001358 (semiprimes).
Cf. A176896 (safe semiprimes), A111153 (Sophie Germain semiprimes), A070552.

Programs

  • Mathematica
    Select[Range[4000],Union[PrimeOmega[{#,#+1,2 #+1}]]=={2}&] (* Harvey P. Dale, May 11 2012 *)

Formula

Equals A111153 intersect A070552. - M. F. Hasler, Mar 20 2011

A217222 Initial terms of sets of 8 consecutive semiprimes with gap 2.

Original entry on oeis.org

8129, 237449, 401429, 452639, 604487, 858179, 1471727, 1999937, 2376893, 2714987, 3111977, 3302039, 3869237, 4622087, 7813559, 9795449, 10587899, 10630739, 11389349, 14186387, 14924153, 15142547, 15757337, 18017687, 18271829, 19732979, 22715057, 25402907
Offset: 1

Views

Author

Zak Seidov, Sep 28 2012

Keywords

Comments

All terms == 11 (mod 18).
Also all terms of sets of 8 consecutive semiprimes are odd, e.g., {8129, 8131, 8133, 8135, 8137, 8139, 8141, 8143} is the smallest set of 8 consecutive semiprimes.
Note that in all cases "9th term" (in this case 8143+2=8145) is divisible by 9 and hence is not semiprime.
Also note that all seven "intermediate" even integers (in this case {8130, 8132, 8134, 8136, 8138, 8140, 8142}) have at least three prime factors counting with multiplicity. Up to n = 40*10^9 there are 5570 terms of this sequence.

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Select[Range[26*10^6],PrimeOmega[#] == 2&],8,1], Union[ Differences[#]]=={2}&]][[1]] (* Harvey P. Dale, Sep 02 2015 *)

A131457 a(n+1) is the next semiprime such that a(n+1)-1 divides (a(1)...a(n))^2.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 26, 33, 34, 35, 46, 49, 51, 55, 57, 58, 65, 69, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 161, 166, 169, 177, 178, 183, 185, 187, 201, 202, 203, 205, 206, 209, 213
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2007

Keywords

Comments

This is to semiprimes A001358 as A007459 is to primes A000040.

Examples

			a(1) = 4 because 4 = 2^2 is the first semiprime.
a(2) = 9 because 9 = 3^2 is the next semiprime after 4, where 9-1=8 divides 4^2 = 16.
a(3) = 10 because 10 = 2*5 is the next semiprime after 9 where 10-9=9 divides (4*9)^2.
a(4) = 21 because 21 = 3*7 is the next semiprime after 10, where 10-1=9 divides (4*9*10)^2.
a(5) = 22 because 22 = 2*11 is the next semiprime after 21, where 21-1=20 divides (4*9*10*21)^2.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true ; else false; fi ; end: A131457 := proc(n) option remember ; local a,prevpr; if n =1 then 4; else prevpr := (mul(A131457(i),i=1..n-1))^2 ; a := A131457(n-1)+1 ; while not isA001358(a) or prevpr mod (a-1) <> 0 do a := a+1 ; od; RETURN(a) ; fi ; end: seq(A131457(n),n=1..80) ; # R. J. Mathar, Oct 30 2007
  • Mathematica
    semiprimeQ[n_] := PrimeOmega[n] == 2;
    a[n_] := a[n] = Module[{k, prevpr}, If[n == 1, 4, prevpr = Product[a[i], {i, 1, n-1}]^2; k = a[n-1]+1; While[!semiprimeQ[k] || Mod[prevpr, k-1] != 0, k++]; Return[k]]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)

Extensions

Corrected and extended by R. J. Mathar, Oct 30 2007

A178034 a(n) = binomial(n*Omega(n),Omega(n)) / n.

Original entry on oeis.org

1, 1, 1, 7, 1, 11, 1, 253, 17, 19, 1, 595, 1, 27, 29, 39711, 1, 1378, 1, 1711, 41, 43, 1, 138415, 49, 51, 3160, 3403, 1, 3916, 1, 25637001, 65, 67, 69, 477191, 1, 75, 77, 657359, 1, 7750, 1, 8515, 8911, 91, 1, 132563501, 97, 11026, 101, 11935, 1, 1633355
Offset: 1

Views

Author

Michel Lagneau, May 17 2010

Keywords

Comments

Omega(.) = A001222(.) is the number of prime divisors of n (counted with multiplicity).
binomial(nk,k)= n*binomial(nk-1,k-1) ensures that all entries are integers.
Subcases for this sequence:
If n is prime, Omega(n) = 1, and a(n) = binomial (n,1) / n = 1.
If n and n+1 are products of two primes (A070552), then Omega(n) = Omega(n+1) = 2, and binomial(n*Omega(n), Omega(n)) / n = binomial(2*n, 2) / n = 2*n-1 and binomial(2*(n+1), 2) / (n+1) = 2*n+1, and we obtain two consecutive numbers of the form (x, x+2), for example (17,19), (27,29), (41,43),... at n =9, 14...
Chaining this property: If n, n+1, and n+2 are semiprimes (A056809) , we find three consecutive numbers of the form (x, x+2,x+4), for example (65, 67, 69), (169, 171, 173), at n=33, 85.
At places where Omega(n)=3, we find the subsequence A060544, for example a(8) = A060544(8).
At places where Omega(n)=4, we find the subsequence A015219.

Examples

			a(8) = binomial(8*Omega(8),Omega(8))/8 = binomial(8*3,3)/8 = 2024/8 = 253.
		

Crossrefs

Programs

  • Maple
    A178034 := proc(n)
            local o ;
            o := numtheory[bigomega](n) ;
            binomial(n*o,o)/n ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    bon[n_]:=Module[{o=PrimeOmega[n]},Binomial[n*o,o]/n]; Array[bon,60] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    a(n)=my(b=bigomega(n));binomial(n*b,b)/n \\ Charles R Greathouse IV, Oct 25 2012

A368670 Numbers k such that k, k + 1, k + 2, and k + 4 are all semiprimes.

Original entry on oeis.org

141, 201, 213, 217, 301, 1137, 1345, 1401, 1761, 1837, 1893, 1941, 1981, 2101, 3097, 3865, 3957, 4413, 4533, 4881, 5997, 6157, 6241, 7113, 7141, 7165, 7401, 7977, 8185, 8257, 8913, 9753, 9985, 10117, 11013, 11181, 11377, 11757, 12057, 13953, 14037, 14253, 14917, 14977, 14997, 16177, 16293, 16437, 16593
Offset: 1

Views

Author

Robert Israel, Jan 02 2024

Keywords

Comments

k, k + 1, k + 2 and k + 3 can't all be semiprimes, as one of them is divisible by 4.
All terms == 1 (mod 4).

Examples

			a(3) = 213 is a term because 213 = 3 * 71, 214 = 2 * 107, 215 = 5 * 43 and 217 = 7 * 31 are all semiprimes.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-bigomega(t)=2 and numtheory:-bigomega(t+1)=2 and numtheory:-bigomega(t+2)=2 and numtheory:-bigomega(t+4)=2, 4 * [$1..10000] +~ 1);
  • Mathematica
    Select[Range[17000], PrimeOmega[#] == PrimeOmega[#+1] == PrimeOmega[#+2] == PrimeOmega[#+4] == 2 &] (* Stefano Spezia, Jan 02 2024 *)

A128686 Least number of the form semiprime - 1 which is the product of exactly n primes.

Original entry on oeis.org

3, 9, 8, 24, 32, 64, 128, 864, 1792, 1536, 2048, 4096, 8192, 24576, 73728, 98304, 131072, 393216, 524288, 1048576, 3145728, 6291456, 8388608, 37748736, 50331648, 150994944, 301989888, 268435456, 1207959552, 1610612736, 2147483648, 4294967296, 19327352832, 25769803776, 115964116992, 171798691840, 343597383680, 927712935936, 2886218022912, 1099511627776, 20890720927744, 24189255811072
Offset: 1

Views

Author

Ray Chandler, Mar 20 2007

Keywords

Crossrefs

Extensions

a(27)-a(42) from Donovan Johnson, Nov 24 2010

A131208 Greatest prime divisor of all composite numbers between n-th semiprime and next semiprime, or 1 if there are no such composite numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 1, 3, 1, 7, 1, 1, 3, 1, 11, 3, 5, 13, 7, 1, 5, 7, 17, 7, 19, 13, 7, 1, 1, 11, 23, 1, 1, 17, 11, 19, 29, 1, 5, 1, 1, 31, 13, 1, 23, 1, 1, 3, 1, 37, 13, 1, 5, 41, 7, 43, 1, 13, 23, 31, 47, 13, 1, 1, 17, 1, 23, 53, 1, 1, 3, 1, 1, 11, 37, 29, 59, 61, 31, 7
Offset: 1

Views

Author

Jonathan Vos Post, Oct 24 2007

Keywords

Comments

Largest of all prime factors of the numbers between semiprime(n) and semiprime(n+1). Semiprime analog of A052248. a(A070552(n)) = 1. This sequence defines a mapping of semiprimes to primes.

Crossrefs

Formula

a(n) = MAX{(A001358(n) < k < A001358(n+1), A006530(k))}.

Extensions

Corrected and extended by R. J. Mathar, Jan 15 2008

A133597 Array of semiprimes, read by antidiagonals, where row k is the first of pairs of consecutive semiprimes j and j+k.

Original entry on oeis.org

9, 4, 14, 6, 49, 21, 10, 22, 55, 25, 69, 51, 35, 91, 33, 15, 77, 58, 46, 119, 34, 26, 123, 106, 65, 62, 143, 38, 169, 39, 365, 161, 87, 74, 159, 57, 146, 437, 134, 371, 178, 111, 82, 183, 85, 237, 226, 458, 187, 505, 221, 129, 115, 185, 86
Offset: 1

Views

Author

Jonathan Vos Post, Dec 27 2007

Keywords

Comments

Every semiprime occurs in this table exactly once. Note that similar tables exist for k-almost primes (integers with exactly k prime factors, with multiplicity), this being the k=2 slice of a 3-dimensional array.

Examples

			The array begins:
==================================================================
n=......1....2.....3....4....5....6....7....8....9...10
==================================================================
k=1.|...9...14....21...25...33...34...38...57...85...86....A070552
k=2.|...4...49....55...91..119..143..159..183..185..203....A136196
k=3.|...6...22....35...46...62...74...82..115..155..166....A264043
k=4.|. 10...51....58...65...87..111..129..209..249..274....A264044
k=5.|..69...77...106..161..178..221..254..309..314..329....A264045
k=6.|..15..123...365..371..505..545..573..591..649..707....A264046
k=7.|..26...39...134..187..194..267..519..566..655..771....
k=8.|.169..437...458..614..723..737..905..965.1047.1059....
k=9.|.146..226...278..346.1018.1177.1273.1546.1594.1865....
k=10|.237..427..1027.1101.1661.2723.2747.3173.3295.3669....A217030
==================================================================
		

Crossrefs

Programs

  • Mathematica
    v = Select[Range[5000], PrimeOmega[#]==2 &]; L[k_] := L[k] = v[[Select[Range[Length[v]-1], v[[#+1]] - v[[#]] == k &]]]; Flatten@ Table[ Table[L[k-j+1][[j]], {j, k}], {k, 10}] (* Giovanni Resta, Jun 20 2016 *)

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016
Previous Showing 21-30 of 32 results. Next