cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 155 results. Next

A336866 Number of integer partitions of n without all distinct multiplicities.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 15, 21, 28, 46, 56, 80, 114, 149, 192, 269, 337, 455, 584, 751, 943, 1234, 1527, 1944, 2422, 3042, 3739, 4699, 5722, 7100, 8668, 10634, 12880, 15790, 19012, 23093, 27776, 33528, 40102, 48264, 57469, 68793, 81727, 97372, 115227
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2020

Keywords

Examples

			The a(0) = 0 through a(9) = 15 partitions (empty columns shown as dots):
  .  .  .  (21)  (31)  (32)  (42)    (43)    (53)     (54)
                       (41)  (51)    (52)    (62)     (63)
                             (321)   (61)    (71)     (72)
                             (2211)  (421)   (431)    (81)
                                     (3211)  (521)    (432)
                                             (3221)   (531)
                                             (3311)   (621)
                                             (4211)   (3321)
                                             (32111)  (4221)
                                                      (4311)
                                                      (5211)
                                                      (32211)
                                                      (42111)
                                                      (222111)
                                                      (321111)
		

Crossrefs

A098859 counts the complement.
A130092 gives the Heinz numbers of these partitions.
A001222 counts prime factors with multiplicity.
A013929 lists nonsquarefree numbers.
A047966 counts uniform partitions.
A047967 counts non-strict partitions.
A071625 counts distinct prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor with distinct prime multiplicities.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Length/@Split[#]&]],{n,0,30}]

Formula

a(n) = A000041(n) - A098859(n).

A325277 Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps p^i*...*q^j to prime(i)*...*prime(j) where p through q are distinct primes.

Examples

			Triangle begins:
   1            26 4 3        51 4 3          76 6 4 3
   2            27 5          52 6 4 3        77 4 3
   3            28 6 4 3      53              78 8 5
   4 3          29            54 10 4 3       79
   5            30 8 5        55 4 3          80 14 4 3
   6 4 3        31            56 10 4 3       81 7
   7            32 11         57 4 3          82 4 3
   8 5          33 4 3        58 4 3          83
   9 3          34 4 3        59              84 12 6 4 3
  10 4 3        35 4 3        60 12 6 4 3     85 4 3
  11            36 9 3        61              86 4 3
  12 6 4 3      37            62 4 3          87 4 3
  13            38 4 3        63 6 4 3        88 10 4 3
  14 4 3        39 4 3        64 13           89
  15 4 3        40 10 4 3     65 4 3          90 12 6 4 3
  16 7          41            66 8 5          91 4 3
  17            42 8 5        67              92 6 4 3
  18 6 4 3      43            68 6 4 3        93 4 3
  19            44 6 4 3      69 4 3          94 4 3
  20 6 4 3      45 6 4 3      70 8 5          95 4 3
  21 4 3        46 4 3        71              96 22 4 3
  22 4 3        47            72 15 4 3       97
  23            48 14 4 3     73              98 6 4 3
  24 10 4 3     49 3          74 4 3          99 6 4 3
  25 3          50 6 4 3      75 6 4 3       100 9 3
		

Crossrefs

Row lengths are 1 for n = 1 and A323014(n) for n > 1.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>1&&!PrimeQ[#]&],{n,30}]

Formula

T(n,k) = A325239(n,k) for k <= A323014(n).
A001222(T(n,k)) = A323023(n,k) for n > 1.

A353838 Numbers whose prime indices have all distinct run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with run-sums (2,4,3), so 180 is in the sequence.
The prime indices of 315 are {2,2,3,4}, with run-sums (4,3,4), so 315 is not in the sequence.
		

Crossrefs

The version for all equal run-sums is A353833, counted by A304442.
These partitions are counted by A353837.
The complement is A353839.
The version for compositions is A353852, counted by A353850.
The greatest run-sum is given by A353862, least A353931.
The weak case is A353866, counted by A353864.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A323022 Fourth omega of n. Number of distinct multiplicities in the prime signature of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

The indices of terms greater than 1 are {60, 84, 90, 120, 126, 132, 140, 150, ...}.
First term greater than 2 is a(1801800) = 3. In general, the first appearance of k is a(A182856(k)) = k.
The prime signature of n (row n of A118914) is the multiset of prime multiplicities in n.
We define the k-th omega of n to be Omega(red^{k-1}(n)) where Omega = A001222 and red^{k} is the k-th functional iteration of A181819. The first three omegas are A001222, A001221, A071625, and this sequence is the fourth. The zeroth omega is not uniquely determined from prime signature, but one possible choice is A056239 (sum of prime indices).

Examples

			The prime signature of 1286485200 is {1, 1, 1, 2, 2, 3, 4}, in which 1 appears three times, two appears twice, and 3 and 4 both appear once, so there are 3 distinct multiplicities {1, 2, 3} and hence a(1286485200) = 3.
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[PrimeNu[red[red[n]]],{n,200}]
  • PARI
    a(n) = my(e=factor(n)[, 2], s = Set(e), m=Map(), v=vector(#s)); for(i=1, #s, mapput(m,s[i],i)); for(i=1, #e, v[mapget(m,e[i])]++); #Set(v) \\ David A. Corneth, Jan 02 2019
    
  • PARI
    A071625(n) = #Set(factor(n)[, 2]); \\ From A071625
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323022(n) = A071625(A181819(n)); \\ Antti Karttunen, Jan 03 2019

Formula

Extensions

More terms from Antti Karttunen, Jan 03 2019

A325272 Adjusted frequency depth of n!.

Original entry on oeis.org

0, 1, 3, 4, 5, 4, 6, 6, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Examples

			Recursively applying A181819 starting with 120 gives 120 -> 20 -> 6 -> 4 -> 3, so a(5) = 5.
		

Crossrefs

a(n) = A001222(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fd[n_]:=Switch[n,1,0,?PrimeQ,1,,1+fd[Times@@Prime/@Last/@FactorInteger[n]]];
    Table[fd[n!],{n,30}]

Formula

a(n) = A323014(n!).

A071626 Number of distinct exponents in the prime factorization of n!.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - Carlo Sanna, May 28 2019
R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - Md Rahil Miraj, Apr 05 2024

Examples

			n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
    Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* Gus Wiseman, May 15 2019 *)
  • PARI
    a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A071625(n!) = A323023(n!,3). - Gus Wiseman, May 15 2019

A325242 Irregular triangle read by rows with zeros removed where T(n,k) is the number of integer partitions of n with k distinct multiplicities, n > 0.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 9, 10, 12, 11, 19, 15, 26, 1, 13, 39, 4, 25, 47, 5, 19, 70, 12, 29, 89, 17, 33, 115, 28, 42, 148, 41, 39, 189, 69, 62, 235, 88, 55, 294, 141, 81, 362, 183, 1, 84, 450, 253, 5, 103, 558, 333, 8, 105, 669, 464, 17, 153, 817, 576, 29
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, the partition (32111) has multiplicities {1,1,3}, of which 2 are distinct, so is counted under T(8,2).

Examples

			Triangle begins:
   1
   2
   3
   4   1
   4   3
   8   3
   6   9
  10  12
  11  19
  15  26   1
  13  39   4
  25  47   5
  19  70  12
  29  89  17
  33 115  28
  42 148  41
  39 189  69
  62 235  88
  55 294 141
  81 362 183   1
Row n = 8 counts the following partitions:
  (8)         (332)
  (44)        (422)
  (53)        (611)
  (62)        (3221)
  (71)        (4211)
  (431)       (5111)
  (521)       (22211)
  (2222)      (32111)
  (3311)      (41111)
  (11111111)  (221111)
              (311111)
              (2111111)
		

Crossrefs

Row lengths are A056556. Row sums are A000041. Column k = 1 is A047966. Column k = 2 is A325243.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[Union[Length/@Split[#]]]==k&]],{n,20},{k,n}],0,2]

A059404 Numbers with different exponents in their prime factorizations.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.
Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - Ctibor O. Zizka, Sep 19 2008

Examples

			440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
		

Crossrefs

Complement of A072774 (powers of squarefree numbers).

Programs

  • Maple
    isA := n -> 1 < nops({seq(padic:-ordp(n, p), p in NumberTheory:-PrimeFactors(n))}): select(isA, [seq(1..190)]);  # Peter Luschny, Apr 14 2025
  • Mathematica
    A059404Q[n_] := Length[Union[FactorInteger[n][[All, 2]]]] > 1;
    Select[Range[200], A059404Q] (* Paolo Xausa, Jan 07 2025 *)
  • PARI
    is(n)=#Set(factor(n)[,2])>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import factorint
    def ok(n): return len(set(factorint(n).values())) > 1
    print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A059404(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
    
  • SageMath
    def isA(n): return 1 < len(set(valuation(n, p) for p in prime_divisors(n)))
    print([n for n in range(1, 190) if isA(n)])  # Peter Luschny, Apr 14 2025

Formula

A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) > 1.
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - 1 - Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025

A325238 First positive integer with each omega-sequence.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 96, 120, 128, 192, 210, 216, 240, 256, 360, 384, 420, 480, 512, 720, 768, 840, 900, 960, 1024, 1260, 1296, 1440, 1536, 1680, 1920, 2048, 2310, 2520, 2880, 3072, 3360, 3840, 4096, 4620, 5040, 5760, 6144, 6720
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = frequency depth of n, and the k-th part is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, given by red(n = p^i*...*q^j) = prime(i)*...*prime(j), i.e., the product of primes indexed by the prime exponents of n.

Examples

			The sequence of terms together with their omega-sequences begins:
    1:
    2: 1
    4: 2 1
    6: 2 2 1
    8: 3 1
   12: 3 2 2 1
   16: 4 1
   24: 4 2 2 1
   30: 3 3 1
   32: 5 1
   36: 4 2 1
   48: 5 2 2 1
   60: 4 3 2 2 1
   64: 6 1
   96: 6 2 2 1
  120: 5 3 2 2 1
  128: 7 1
  192: 7 2 2 1
  210: 4 4 1
  216: 6 2 1
  240: 6 3 2 2 1
  256: 8 1
  360: 6 3 3 1
  384: 8 2 2 1
  420: 5 4 2 2 1
		

Crossrefs

Programs

  • Mathematica
    tomseq[n_]:=If[n<=1,{},Most[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]];
    omseqs=Table[Total/@tomseq[n],{n,1000}];
    Sort[Table[Position[omseqs,x][[1,1]],{x,Union[omseqs]}]]

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]
Previous Showing 11-20 of 155 results. Next