A373630 a(n) is the n-th semiprime after the n-th prime.
4, 6, 10, 15, 25, 26, 35, 38, 49, 57, 58, 74, 85, 86, 91, 95, 118, 119, 123, 133, 134, 143, 146, 161, 183, 185, 187, 201, 202, 205, 218, 221, 237, 247, 265, 267, 278, 295, 299, 302, 309, 314, 326, 327, 334, 335, 362, 393, 395, 398, 403, 413, 415, 427, 446, 453, 466, 469, 473, 481, 482, 497, 519
Offset: 1
Keywords
Examples
a(5) = 25 because the 5th prime is 11 and the first 5 semiprimes > 11 are 14,15,21,22,25.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # for terms <= N P:= select(isprime,[2,seq(i,i=3..N,2)]): S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]): nS:= nops(S): f:= proc(n) local j; j:= ListTools:-BinaryPlace(S,P[n]); if j + n <= nS then S[j+n] else fail fi end proc: R:= NULL: for i from 1 do v:= f(i); if v = fail then break fi; R:= R,v od: R;
-
Mathematica
seq={};Do[i=Prime[n]+1;cnt=0;While[cnt
James C. McMahon, Jun 15 2024 *) -
Python
from math import isqrt from sympy import primepi, prime def A373630(n): p = prime(n) q = n+int(sum(primepi(p//prime(k))-k+1 for k in range(1,primepi(isqrt(p))+1))) def f(x): return int(q+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1))) m, k = q, f(q) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
Comments