cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A250123 Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x+1)*(x^15 +3*x^14 -4*x^11 -6*x^10 -7*x^9 -4*x^8 -7*x^7 -11*x^6 -9*x^5 -7*x^4 -4*x^3 -4*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250124 Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(3*x^14 -4*x^12 -4*x^11 -7*x^10 -12*x^9 -14*x^8 -21*x^7 -17*x^6 -15*x^5 -15*x^4 -10*x^3 -7*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250125 Coordination sequence of point of type 3.4.3.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 6, 11, 13, 15, 23, 23, 33, 30, 33, 42, 41, 54, 46, 54, 58, 58, 73, 64, 75, 74, 79, 89, 81, 94, 92, 100, 105, 102, 110, 109, 119, 123, 123, 126, 130, 135, 140, 142, 144, 151, 151, 161, 158, 161, 170, 169, 182, 174, 182, 186, 186, 201, 192, 203, 202, 207, 217
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x^17 +x^16 +x^15 +x^14 -2*x^13 -4*x^12 -6*x^11 -7*x^10 -11*x^9 -18*x^8 -16*x^7 -19*x^6 -14*x^5 -13*x^4 -11*x^3 -6*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250126 Coordination sequence of point of type 3.3.4.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 9, 9, 12, 19, 21, 28, 27, 31, 38, 40, 48, 44, 49, 56, 57, 67, 63, 69, 73, 75, 85, 80, 88, 92, 95, 102, 98, 106, 109, 114, 121, 118, 123, 127, 132, 138, 137, 142, 147, 149, 156, 155, 159, 166, 168, 176, 172, 177, 184, 185, 195, 191, 197, 201, 203, 213, 208
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(2*x^16 +x^14 -2*x^12 -7*x^11 -10*x^10 -10*x^9 -14*x^8 -18*x^7 -17*x^6 -18*x^5 -12*x^4 -9*x^3 -9*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A072151 Coordination sequence for AlPO_4-11 structure with respect to node (Z) where decagon, hexagon and square meet and is not adjacent to node of type (X).

Original entry on oeis.org

1, 3, 5, 7, 11, 14, 15, 18, 22, 24, 26, 28, 31, 36, 37, 37, 43, 47, 46, 49, 53, 55, 59, 60, 61, 68, 70, 68, 74, 78, 77, 82, 85, 85, 91, 93, 92, 99, 101, 99, 107, 110, 107, 114, 118, 116, 122, 124, 123, 132, 133, 129, 139, 143, 138, 145, 149, 147, 155, 156
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There are three types of nodes in this structure.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.

Crossrefs

Formula

Empirical g.f.: 1 +x *(3 +5*x +10*x^2 +13*x^3 +16*x^4 +16*x^5 +16*x^6 +16*x^7 +16*x^8 +13*x^9 +10*x^10 +5*x^11 +3*x^12) / ( (1+x^2) *(x^6+x^3+1) *(x-1)^2 *(1+x+x^2)^2 ). - R. J. Mathar, Sep 30 2011

Extensions

More terms from R. J. Mathar, Mar 29 2007
Extended by Joseph Myers, Sep 29 2011

A072152 Coordination sequence for VPl-5 structure with respect to node (X) where 18-gon and two squares meet.

Original entry on oeis.org

1, 3, 4, 6, 8, 8, 10, 14, 16, 17, 20, 23, 22, 22, 28, 32, 30, 31, 36, 37, 36, 40, 46, 46, 44, 47, 50, 51, 54, 58, 60, 60, 60, 61, 64, 69, 72, 72, 74, 76, 74, 75, 82, 87, 86, 86, 90, 90, 88, 93, 100, 101, 100, 102, 104, 104, 106, 111, 114, 115, 116, 116, 118, 122
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There are two types of nodes in this structure.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.

Crossrefs

Formula

Empirical G.f.: -(x^17+x^16-x^15-2*x^14-2*x^13-2*x^12-4*x^11-5*x^10-5*x^9-5*x^8-7*x^7-6*x^6-4*x^5-4*x^4-4*x^3-2*x^2-2*x-1)/((x-1)^2*(x^2+1)*(x^4+1)*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Nov 18 2012]

Extensions

Extended by Joseph Myers, Sep 30 2011

A072153 Coordination sequence for VPl-5 structure with respect to node (Y) where 18-gon, hexagon and square meet.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 13, 16, 19, 20, 20, 22, 25, 27, 29, 32, 34, 34, 35, 38, 41, 43, 45, 47, 48, 49, 51, 54, 57, 59, 60, 61, 63, 65, 67, 70, 73, 74, 74, 76, 79, 81, 83, 86, 88, 88, 89, 92, 95, 97, 99, 101, 102, 103, 105, 108, 111, 113, 114, 115, 117, 119, 121, 124
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There are two types of nodes in this structure.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.

Crossrefs

Formula

Empirical G.f.: (x^2+x+1)^2*(x^6+x^3+1)/((x-1)^2*(x^2+1)*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Nov 18 2012]

Extensions

Extended by Joseph Myers, Sep 30 2011

A242941 a(n) is the number of convex uniform tessellations in dimension n.

Original entry on oeis.org

1, 11, 28, 143
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

Terms for n > 4 have not been determined so far. Alfredo Andreini in 1905 gave a value of 25 for a(3), later found to be incorrect. The value 28 for a(3) was given by Norman Johnson in 1991 and later in 1994 independently by Branko Grünbaum. The value for a(4) was given by George Olshevsky in 2006.
Deza and Shtogrin (2000) agree that the value of a(3) is 28, although the authors do not provide a proof. - Felix Fröhlich, Nov 29 2014
From Felix Fröhlich, Feb 03 2019: (Start)
The 11 convex uniform tilings are all illustrated in Kepler, 1619. For an argument that exactly 11 such tilings exist, see Grünbaum, Shephard, 1977.
In dimension 2, the definition of "uniform polytope" usually seems to be equivalent to the regular polygons in order to exclude polygons that alternate two different edge-lengths. Applying this principle retroactively to dimension 1 (as done, as I assume, by Coxeter, see Coxeter, 1973, p. 129) yields a(1) = 1. (End)

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486614809.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, Vol. 4, No. 2 (1994), 49-56.
  • N. W. Johnson, Uniform Polytopes, [To appear, cf. Weiss, Stehle, 2017].

Crossrefs

Cf. A068599.
List of coordination sequences for the 11 uniform 2D tilings: A008458(the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for the 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Extensions

Edited by N. J. A. Sloane, Feb 15 2018
Edited by Felix Fröhlich, Feb 03-10 2019

A301730 Expansion of (x^8-x^7+x^6+5*x^5+4*x^4+3*x^3+5*x^2+5*x+1)/(x^6-x^5-x+1).

Original entry on oeis.org

1, 6, 11, 14, 18, 24, 30, 34, 38, 42, 48, 54, 58, 62, 66, 72, 78, 82, 86, 90, 96, 102, 106, 110, 114, 120, 126, 130, 134, 138, 144, 150, 154, 158, 162, 168, 174, 178, 182, 186, 192, 198, 202, 206, 210, 216, 222, 226, 230, 234, 240, 246, 250, 254, 258, 264
Offset: 0

Views

Author

N. J. A. Sloane, Mar 30 2018

Keywords

Comments

Growth series for group with presentation < X, Y, Z | X^2 = Y^2, X^2 = Z^2, X^2 = (Y*Z)^3, X^2 = (Z*X)^2, X^2 = (X*Y)^6 >. Probably Shutov intended to add "X^2 = Id" to the presentation, which would have produced the sequence A072154.

Crossrefs

Cf. A072154.

Programs

  • Magma
    R := RationalFunctionField(Integers());
    FG3 := FreeGroup(3);
    Q3 := quo;
    G3 := AutomaticGroup(Q3);
    f3 := GrowthFunction(G3);
    R!f3;
    PSR := PowerSeriesRing(Integers():Precision := 60);
    Coefficients(PSR!f3);

Formula

From Bruno Berselli, Apr 09 2018: (Start)
G.f.: (x + 1)*(x^7 - 2*x^6 + 3*x^5 + 2*x^4 + 2*x^3 + x^2 + 4*x + 1)/((x - 1)^2*(x^4 + x^3 + x^2 + x + 1)).
a(5*k) = 24*k with k>0, a(0)=1;
a(5*k+1) = 24*k + 6;
a(5*k+2) = 24*k + 10 with k>0, a(2)=11;
a(5*k+3) = 24*k + 14;
a(5*k+4) = 24*k + 18. (End)
Previous Showing 21-29 of 29 results.