cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A116938 Expansion of e^2 in base 2.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0
Offset: 3

Views

Author

Jonathan Vos Post, Mar 21 2006

Keywords

Examples

			111.010001000000 (base 2) ~ 7.389056098930650... (base 10) ~ e^2. 100 decimal places precision here.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Eli Maor, e: The Story of a Number, Princeton Univ. Press, 1994.

Crossrefs

Cf. A001113 (e), A072334 (e^2), A090142 (e^2-e).
Cf. A090143 (e^3-2e^2+e/2), A089139 (e^4-3e^3+2e^2-e/6), A090143 (e^3-2e^2+e/2).
Cf. A001671 (powers of e rounded up), A107586 (powers of e^(1/e) rounded up).

Programs

A236289 Decimal expansion of e^2 / (e - 1).

Original entry on oeis.org

4, 3, 0, 0, 2, 5, 8, 5, 3, 5, 3, 2, 8, 3, 7, 1, 6, 5, 9, 7, 4, 5, 2, 8, 9, 4, 7, 6, 4, 6, 1, 6, 7, 4, 0, 5, 6, 3, 0, 4, 1, 1, 6, 3, 9, 4, 7, 7, 5, 3, 5, 5, 7, 1, 1, 2, 3, 3, 7, 5, 4, 6, 8, 7, 3, 7, 2, 1, 2, 0, 4, 4, 7, 7, 4, 5, 2, 1, 7, 3, 3, 7, 8, 5, 8, 5, 8, 6, 8, 8, 7, 9, 3, 0, 0, 4, 1, 4, 8, 5, 0, 8, 2, 0, 8, 6, 6
Offset: 1

Views

Author

Jaroslav Krizek, Feb 04 2014

Keywords

Examples

			4.3002585353283716597452894764616...
		

Crossrefs

Cf. A001113 (decimal expansion of e), A072334 (decimal expansion of e^2), A091131 (decimal expansion of e-1).

Programs

Formula

Equals A072334 / A091131.

Extensions

Mathematica program modified by Harvey P. Dale, Aug 05 2014

A303617 Decimal expansion of Sum_{k >= 0} 2^(2*k+1)/Product_{i = 0..k} (2*i+1).

Original entry on oeis.org

8, 8, 3, 9, 4, 3, 9, 2, 4, 0, 9, 1, 9, 0, 4, 9, 0, 9, 4, 5, 6, 6, 9, 8, 0, 2, 4, 4, 3, 6, 2, 0, 3, 5, 7, 4, 1, 7, 1, 0, 0, 2, 8, 4, 6, 3, 7, 8, 3, 0, 9, 2, 7, 9, 6, 0, 4, 1, 8, 6, 3, 3, 9, 4, 0, 1, 1, 3, 8, 1, 0, 7, 1, 4, 5, 3, 7, 8, 6, 1, 4, 5, 5, 8, 0, 9, 4, 2, 0, 9, 6, 7, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 27 2018

Keywords

Examples

			8.83943924091904909456698024436203574171002846378309279604186339401138107...
2/1 + 2^3/(1*3) + 2^5/(1*3*5) + 2^7/(1*3*5*7) + 2^9/(1*3*5*7*9) + 2^11/(1*3*5*7*9*11) + 2^13/(1*3*5*7*9*11*13) + ...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^2 Sqrt[Pi/2] Erf[Sqrt[2]], 10, 100][[1]]
  • PARI
    suminf(k=0, 2^(2*k+1)/prod(i=0, k, (2*i+1))) \\ Michel Marcus, Apr 27 2018

Formula

Equals e^2*sqrt(Pi/2)*erf(sqrt(2)) = A072334*A069998*A110894.

A330479 Decimal expansion of 2*e^2-2 (or 2*(e^2-1)).

Original entry on oeis.org

1, 2, 7, 7, 8, 1, 1, 2, 1, 9, 7, 8, 6, 1, 3, 0, 0, 4, 5, 4, 4, 6, 0, 8, 5, 4, 9, 2, 1, 1, 5, 0, 0, 1, 5, 6, 2, 6, 3, 6, 0, 6, 3, 1, 1, 4, 1, 1, 0, 3, 6, 9, 4, 6, 4, 8, 1, 7, 4, 2, 5, 5, 6, 4, 5, 0, 4, 5, 1, 4, 7, 5, 9, 2, 1, 5, 8, 1, 1, 5, 5, 2, 6, 7, 6, 8, 6, 2, 4, 9, 7, 0, 1, 5, 8, 2, 4, 3, 5, 8, 9, 5, 4, 7, 5
Offset: 2

Views

Author

Eder Vanzei, Dec 15 2019

Keywords

Comments

Solution of the equation W(x+W(x+W(...))) = 2, where W(x) is the Lambert W function.
2*e^2-2 is a transcendental number.

Examples

			12.7781121978613004544608549211500156263606311411036946481742556450...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*(E^2-1), 10, 105][[1]] (* Amiram Eldar, Dec 19 2019 *)

Formula

Equals 2*(A072334 - 1).

A344144 Decimal expansion of Sum_{n>=0} A000108(n)/n!.

Original entry on oeis.org

5, 0, 9, 0, 6, 7, 8, 7, 2, 9, 3, 1, 7, 1, 6, 5, 6, 2, 2, 9, 7, 8, 6, 7, 7, 7, 1, 9, 9, 0, 7, 4, 9, 8, 4, 3, 7, 9, 7, 3, 8, 5, 1, 6, 8, 0, 2, 0, 9, 3, 7, 5, 6, 1, 6, 5, 2, 5, 1, 2, 7, 2, 4, 3, 1, 1, 0, 6, 5, 3, 6, 0, 2, 5, 8, 4, 9, 1, 7, 7, 9, 7, 4, 3, 9, 3, 5
Offset: 1

Views

Author

Ya-Ping Lu, May 10 2021

Keywords

Examples

			5.09067872931716562297867771990749843797385168020937561652512724311065360258491...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^2 * BesselI[2, 2], 10, 100][[1]] (* Amiram Eldar, May 17 2021 *)
  • PARI
    suminf(n=0, (2*n)!/(n!*n!*(n+1)!)) \\ Michel Marcus, May 16 2021

Formula

Equals e^2 * BesselI(2,2) = A072334 * A229020. - Amiram Eldar, May 17 2021

A377635 Decimal expansion of 1/(exp(2) - 1).

Original entry on oeis.org

1, 5, 6, 5, 1, 7, 6, 4, 2, 7, 4, 9, 6, 6, 5, 6, 5, 1, 8, 1, 8, 0, 8, 0, 6, 2, 3, 4, 6, 5, 4, 2, 3, 9, 1, 6, 4, 5, 6, 0, 0, 6, 9, 7, 0, 6, 2, 0, 2, 2, 6, 3, 2, 7, 7, 7, 1, 5, 7, 6, 4, 8, 3, 7, 8, 3, 5, 4, 2, 1, 3, 5, 2, 3, 0, 9, 3, 7, 1, 9, 1, 3, 3, 7, 3, 3, 9, 6, 2, 0
Offset: 0

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			0.1565176427496656518180806234654239164560069706202...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/(Exp[2] - 1), 10, 100]]
  • PARI
    1/(exp(2) - 1) \\ Amiram Eldar, Nov 08 2024

Formula

Equals 1/(A072334 - 1).
Equals Sum_{k >= 1} (-1)^(k+1)*zeta(2*k)/Pi^(2*k).
From Amiram Eldar, Nov 08 2024: (Start)
Formulas from Shamos (2011):
Equals (coth(1) - 1)/2 = (A073747 - 1)/2.
Equals Sum_{k>=1} exp(-2*k).
Equals Sum_{k>=1} 1/(k^2*Pi^2 + 1).
Equals Sum_{k>=0} B(k)*2^(k-1)/k!, where B(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. (End)
Previous Showing 31-36 of 36 results.