cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 87 results. Next

A079956 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,4}.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 2, 1, 3, 5, 3, 6, 10, 9, 12, 21, 22, 27, 43, 52, 61, 91, 117, 140, 195, 260, 318, 426, 572, 718, 939, 1258, 1608, 2083, 2769, 3584, 4630, 6110, 7961, 10297, 13509, 17655, 22888, 29916, 39125, 50840, 66313, 86696, 112853, 147069, 192134
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {3,4,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,1,1,0,1},{1,0,0,1,1,0},60] (* Harvey P. Dale, Oct 05 2016 *)

Formula

a(n) = a(n-3)+a(n-4)+a(n-6).
G.f.: -1/(x^6+x^4+x^3-1).

A079976 Expansion of g.f. 1/(1-x-x^2-x^4-x^5).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 36, 65, 118, 214, 388, 703, 1274, 2309, 4185, 7585, 13747, 24915, 45156, 81841, 148329, 268832, 487232, 883061, 1600463, 2900685, 5257212, 9528190, 17268926, 31298264, 56725087, 102808753, 186330956, 337706899
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions of n into elements of the set {1,2,4,5}.
Number of permutations (p(1),...,p(n)) of (1..n) satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2-x^4-x^5),{x,0,40}],x] (* or *) LinearRecurrence[ {1,1,0,1,1},{1,1,2,3,6},40] (* Harvey P. Dale, Mar 16 2023 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5).

Extensions

Since this sequence arises in several different contexts, I made the definition as simple as possible. - N. J. A. Sloane, Apr 17 2011

A079981 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,0,1,2}.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 8, 0, 12, 0, 27, 0, 52, 0, 95, 0, 196, 0, 369, 0, 720, 0, 1408, 0, 2709, 0, 5292, 0, 10249, 0, 19894, 0, 38675, 0, 74992, 0, 145692, 0, 282823, 0, 549000, 0, 1066095, 0, 2069496, 0, 4018065, 0, 7801024, 0, 15144960, 0, 29404281, 0
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Also, number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,2}. a(n)=A079980(k) if n=2k, a(n)=0 otherwise.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Bisection gives A079980 (even part).

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,1,0,4,0,2,0,2,0,-2,0,1,0,0,0,1},{1,0,0,0,1,0,2,0,3,0,8,0,12,0,27,0,52,0},80] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Recurrence: a(n) = a(n-4)+4*a(n-6)+2*a(n-8)+2*a(n-10)-2*a(n-12)+a(n-14)+a(n-18).
G.f.: -(x^12-2*x^6+1)/(x^18+x^14-2*x^12+2*x^10+2*x^8+4*x^6+x^4-1).

A079989 Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=3, r=3, I={1,2}.

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 27, 51, 103, 221, 498, 1064, 2240, 4728, 10076, 21559, 46075, 98085, 208759, 444727, 948151, 2021335, 4307861, 9179111, 19560273, 41686260, 88842852, 189337896, 403497908, 859893060, 1832537757, 3905386173, 8322891733, 17737112293, 37799944529
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Also, number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=3, r=3, I={-2,-1}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

a(n) = a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +3*a(n-5) +4*a(n-6) -7*a(n-7) -7*a(n-8) -6*a(n-9) +6*a(n-10) -2*a(n-11) -a(n-12) +a(n-13) +4*a(n-14) +a(n-15) -3*a(n-16) +a(n-18) -a(n-19) -a(n-20).
G.f.: -(x^14 -x^12 +x^11 -x^9 -x^8 +x^6 -x^5 +3*x^3 +x^2-1)/( x^20 +x^19 -x^18 +3*x^16 -x^15 -4*x^14 -x^13 +x^12 +2*x^11 -6*x^10 +6*x^9 +7*x^8 +7*x^7 -4*x^6 -3*x^5 -x^4 -2*x^3 -x^2 -x +1).

A224812 Number of subsets of {1,2,...,n-10} without differences equal to 2, 4, 6, 8 or 10.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 63, 81, 108, 144, 192, 256, 336, 441, 567, 729, 918, 1156, 1462, 1849, 2365, 3025, 3905, 5041, 6532, 8464, 10948, 14161, 18207, 23409, 29988, 38416, 49196, 63001, 80822, 103684, 133308, 171396, 220662, 284089, 365638, 470596, 605052, 777924, 999306, 1283689, 1648515
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=10, I={-2,0,10}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) +3*a(n-12) -2*a(n-13) +2*a(n-14) -a(n-15) +a(n-16) -2*a(n-19) +a(n-20) -2*a(n-21) -3*a(n-24) +a(n-25) -2*a(n-26) +a(n-31) +a(n-36).
G.f.: -(x+1) *(x^23 -x^22 +x^21 -x^20 +x^19 -x^13 +x^12 -3*x^11 +3*x^10 -3*x^9 +2*x^8 -2*x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x +1)/ ((x^6 +x -1) *(x^30 +x^24 -2*x^20 -2*x^18 -x^14 -2*x^12 +x^10 +x^8 +x^6+1) ).
a(2*k) = (A005708(k))^2, a(2*k+1) = A005708(k) * A005708(k+1).

A224813 Number of subsets of {1,2,...,n-12} without differences equal to 2, 4, 6, 8, 10 or 12.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 130, 169, 221, 289, 374, 484, 616, 784, 980, 1225, 1505, 1849, 2279, 2809, 3498, 4356, 5478, 6889, 8715, 11025, 13965, 17689, 22344, 28224, 35448, 44521, 55704, 69696, 87120, 108900, 136290, 170569, 213934, 268324, 337218, 423801, 533169, 670761, 843570
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=12, I={-2,0,12}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) -a(n-12) +a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) -3*a(n-21) +2*a(n-22) -4*a(n-23) +2*a(n-24) -3*a(n-25) -3*a(n-28) +a(n-29) -2*a(n-30) +3*a(n-35) -a(n-36) +3*a(n-37) +a(n-42) -a(n-49).
G.f.: -(-1 +x^7 +x^9 +x^11 +2*x^14 +x^16 -2*x^21 -2*x^23 -x^28 +x^35)/( (x^7+x-1) *(x^42 -x^36 -2*x^30 -3*x^28 +2*x^24 +2*x^22 +x^18 +2*x^16 +3*x^14 -x^12 -x^10 -x^8 -1) ).
a(2*k) = (A005709(k))^2, a(2*k+1) = A005709(k) * A005709(k+1).

A323800 Number of permutations p of [n] such that max_{j=1..n} |p(j)-j| = 4.

Original entry on oeis.org

0, 42, 274, 1227, 4833, 18827, 75693, 304900, 1212960, 4753020, 18410363, 70943107, 272701262, 1046410914, 4007815161, 15319362279, 58456445860, 222775782355, 848216866767, 3227396592600, 12273205919568, 46650941505906, 177252609519698, 673266690295879
Offset: 4

Views

Author

Alois P. Heinz, Jan 28 2019

Keywords

Crossrefs

Column k=4 of A130152.

Formula

a(n) = A072856(n) - A002526(n).

A323801 Number of permutations p of [n] such that max_{j=1..n} |p(j)-j| = 5.

Original entry on oeis.org

0, 216, 1818, 10402, 50879, 234061, 1076807, 5090497, 24239396, 114890044, 539033760, 2502282836, 11522663348, 52848995167, 241925339959, 1106164932006, 5052307570906, 23047344846397, 104994467312301, 477733956914534, 2171607914492408, 9864023776496558
Offset: 5

Views

Author

Alois P. Heinz, Jan 28 2019

Keywords

Crossrefs

Column k=5 of A130152.

Formula

a(n) = A154654(n) - A072856(n).

A079968 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={3}.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 51, 98, 187, 357, 683, 1305, 2494, 4767, 9110, 17411, 33276, 63596, 121544, 232293, 443954, 848478, 1621597, 3099169, 5923081, 11320094, 21634776, 41348026, 79023662, 151028714, 288643577, 551650823, 1054305916
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,2,3,5,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,0,1,1},{1,1,2,4,7,14},40] (* Harvey P. Dale, Jun 05 2013 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^3+x^2+x-1).

A079974 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=4, I={0,2}.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 3, 2, 5, 5, 9, 10, 16, 20, 30, 39, 56, 75, 106, 144, 201, 275, 382, 525, 727, 1001, 1384, 1908, 2636, 3636, 5021, 6928, 9565, 13200, 18222, 25149, 34715, 47914, 66137, 91285, 126001, 173914, 240052, 331336, 457338, 631251, 871304, 1202639
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {2,4,5}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

Formula

Recurrence: a(n) = a(n-2)+a(n-4)+a(n-5).
G.f.: -1/(x^5+x^4+x^2-1)
Previous Showing 41-50 of 87 results. Next