cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A201220 Numbers m such that m, m-1, m-2 and m-3 are 1,2,3,4-almost primes respectively.

Original entry on oeis.org

107, 263, 347, 479, 863, 887, 1019, 2063, 2447, 3023, 3167, 3623, 5387, 5399, 5879, 6599, 6983, 7079, 8423, 8699, 9743, 9887, 10463, 11807, 12263, 12347, 14207, 15383, 15767, 18959, 20663, 22343, 23039, 23567, 24239, 27239, 32183, 33647, 33767, 37799
Offset: 1

Views

Author

Antonio Roldán, Nov 28 2011

Keywords

Comments

Following a suggestion of Claudio Meller.
m is of the form 12k-1, so m-2 is a multiple of 3 and m-3 is a multiple of 4.

Examples

			6599 is prime, 6598=2*3299 is semiprime, 6597=3*3*733 is 3-almost prime, 6596=2*2*17*97 is 4-almost prime.
		

Crossrefs

Subsequence of A005385 and of A201147.

Programs

  • Mathematica
    primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[40000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 && primeCount[#-3] == 4 &] (* T. D. Noe, Nov 28 2011 *)
    Select[Range[40000],PrimeOmega[Range[#,#+3]]=={4,3,2,1}&]+3 (* Harvey P. Dale, Dec 10 2011 *)
    SequencePosition[PrimeOmega[Range[40000]],{4,3,2,1}][[;;,2]] (* Harvey P. Dale, Oct 08 2023 *)
  • PARI
    list(lim)=my(v=List(), L=(lim-2)\3, t); forprime(p=3, L\3, forprime(q=3, min(p, L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2) && bigomega(t-3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 02 2017

A214343 a(n) is the smallest integer j such that the numbers of prime factors (counting multiplicity) in j, j+1, ... , j+n-1 are the full set {1,2,...,n}.

Original entry on oeis.org

2, 3, 6, 15, 77, 726, 6318, 189375, 755968, 871593371, 33714015615
Offset: 1

Views

Author

Jake Foster, Jul 13 2012

Keywords

Comments

Next term a(10) > 5*10^7. Joerg Arndt, Jul 14 2012

Examples

			a(4)=15 because 15 has two prime factors, 16 has four, 17 has one and 18 has three (and 15 is the smallest number with this property).
a(5) = 77 because 77, 78, 79, 80 and 81 have 2, 3, 1, 5 and 4 prime factors.
		

Crossrefs

Programs

  • Maple
    A214343 := proc(n)
        refs := {seq(i,i=1..n)} ;
        for j from 1 do
            pf := {} ;
            for k from 0 to n-1 do
                pf := pf union {numtheory[bigomega](j+k)} ;
                if nops(pf) < k+1 then
                    break;
                end if;
            end do:
            if pf = refs then
                return j;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    f[n_] := f[n] = FactorInteger[n][[All, 2]] // Total;
    n = 1;
    i = 2;
    While[True,
      While[Union[Table[f[j], {j, i, i + n - 1}]] != Range[n],
       i += 1; f[i] =.
       ];
      Print[i]; n += 1;
      ];

Extensions

a(10)-a(11) from Donovan Johnson, Jul 15 2012

A279518 Start of first run of n successive numbers in which the sum of aliquot parts of the i-th number has exactly i prime factors, for i = 1..n.

Original entry on oeis.org

4, 8, 8, 1909, 558031, 783975, 185363811, 1584002413
Offset: 1

Views

Author

Paolo P. Lava, Dec 14 2016

Keywords

Examples

			sigma(1909) - 1909 = 107 that is a prime number;
sigma(1910) - 1910 = 1546 = 2*773;
sigma(1911) - 1911 = 1281 = 3*7*61;
sigma(1912) - 1912 = 1688 = 2*2*2*211.
No other number < 1909 has this property and therefore a(4) = 1909.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,d,i,j,k,ok,n; d:=1;
    for k from 1 to q do for n from d to q do ok:=1; for j from 1 to k do
    b:=ifactors(sigma(n+j-1)-n-j+1)[2]; if add(b[i][2],i=1..nops(b))<>j then ok:=0; break; fi; od;
    if ok=1 then d:=n; print(n); break; fi; od; od; end: P(10^12);

Extensions

a(7)-a(8) from Giovanni Resta, Dec 14 2016

A279520 Start of first run of n successive numbers in which the arithmetic derivative of the i-th number has exactly i prime factors, for i = 1..n.

Original entry on oeis.org

6, 105, 1001, 2945, 240485, 1671414, 22551962, 22551962
Offset: 1

Views

Author

Paolo P. Lava, Dec 14 2016

Keywords

Examples

			2945' = 839 that is a prime number;
2946' = 2461 = 23*107;
2947' = 428 = 2*2*107;
2948' = 3260 = 2*2*5*163.
No other number < 2945 has this property and therefore a(4) = 2945.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,d,i,j,k,ok,n; d:=1;
    for k from 1 to q do for n from d to q do ok:=1; for j from 1 to k do
    b:=ifactors(sigma(n+j-1))[2]; if add(b[i][2],i=1..nops(b))<>j then ok:=0; break; fi; od;
    if ok=1 then d:=n; print(n); break; fi; od; od; end: P(10^12);

Extensions

a(7)-a(8) from Giovanni Resta, Dec 14 2016

A373618 Least prime starting a run of n consecutive primes p_i, i=1..n, such that p_i + 1 is squarefree and p_(n+1) + 1 is not squarefree.

Original entry on oeis.org

2, 37, 397, 389, 11617, 11597, 11593, 2048509, 2772409, 5193997, 33933701, 125624813, 125624809, 432787781, 432787777, 4762221193, 4762221181, 182839149373, 547414016069, 551900822513
Offset: 1

Views

Author

Jean-Marc Rebert, Jun 11 2024

Keywords

Examples

			a(1) = 2, because 2 is the least prime starting a run of 1 prime such that 2+1 is squarefree and 3+1 = 4 = 2^2 is not squarefree.
For n=4 the first run of 4 squarefree p+1 starts at a(4) = 389, and no run of n=3 so a(3) = 397 is the ending 3 of this run.
  p              = 389, 397, 401, 409, 419
  p+1 squarefree = yes  yes  yes  yes  no
  n=4 run          \----------------/
  n=3 run               \-----------/
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k=1}, While[pr=Product[Boole[SquareFreeQ[Prime[k+i-1]+1]], {i, n}]==0||pr&& Boole[SquareFreeQ[Prime[k+n]+1]]==1, k++]; Prime[k]]; Array[a, 8] (* Stefano Spezia, Jun 11 2024 *)

A373626 Least prime of a run of n consecutive primes p_i, i = 1..n, such that bigomega(p_i + 1) = omega(p_i + 1) + i and bigomega(p_(n+1) + 1) <> omega(p_(n+1) + 1) + n + 1, or -1 if no such prime exists.

Original entry on oeis.org

3, 19, 739, 76913, 4510333, 746264059, 290623032907
Offset: 1

Views

Author

Jean-Marc Rebert, Jun 11 2024

Keywords

Examples

			19 starts a run of 2 consecutive primes 19 and 23, bigomega(19+1) = 2 = omega(19+1) + 1, bigomega(23+1) = 4 = omega(23+1) + 2 and bigomega(29+1) = 3 <> omega(29+1) + 3. So a(2) = 19.
Let i, p, b and w be the indices, the primes p_i, bigomega(p_i + 1) and omega(p_i + 1).
i: [ 1  2  3]
p: [19 23 29]
b: [ 3  4  3]
w: [ 2  2  3]
a(2) = 19
i: [  1   2   3   4]
p: [739 743 751 757]
b: [  4   5   5   2]
w: [  3   3   2   2]
a(3) = 739
		

Crossrefs

Previous Showing 11-16 of 16 results.