cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A256923 Decimal expansion of Sum_{k>=1} (zeta(2k)/k)*(1/3)^(2k).

Original entry on oeis.org

1, 8, 9, 9, 5, 8, 6, 3, 3, 4, 0, 7, 1, 8, 0, 9, 4, 6, 4, 6, 7, 7, 9, 1, 6, 1, 7, 4, 2, 7, 4, 4, 6, 7, 2, 2, 7, 5, 1, 5, 5, 9, 1, 1, 0, 5, 4, 1, 4, 4, 2, 6, 4, 8, 0, 3, 2, 2, 6, 1, 5, 8, 0, 5, 0, 9, 2, 8, 9, 9, 5, 2, 0, 2, 6, 6, 0, 7, 3, 4, 5, 0, 7, 9, 0, 6, 2, 9, 6, 5, 0, 5, 1, 3, 1, 0, 2, 6, 2, 0, 6, 2, 0, 5, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.189958633407180946467791617427446722751559110541442648...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2*Pi/(3*Sqrt[3])], 10, 105] // First

Formula

Equals log(Gamma(2/3)*Gamma(4/3)).
Equals log(2*Pi/(3*sqrt(3))).
Equals log(A248897).
Equals -Sum_{k>=1} log(1 - 1/(3*k)^2). - Amiram Eldar, Aug 12 2020

A358559 Decimal expansion of Bi(0), where Bi is the Airy function of the second kind.

Original entry on oeis.org

6, 1, 4, 9, 2, 6, 6, 2, 7, 4, 4, 6, 0, 0, 0, 7, 3, 5, 1, 5, 0, 9, 2, 2, 3, 6, 9, 0, 9, 3, 6, 1, 3, 5, 5, 3, 5, 9, 4, 7, 2, 8, 1, 8, 8, 6, 4, 8, 5, 9, 6, 5, 0, 5, 0, 4, 0, 8, 7, 8, 7, 5, 3, 0, 1, 4, 2, 9, 6, 5, 1, 9, 3, 0, 5, 5, 2, 0, 6, 4, 0, 5, 2, 9, 3
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.61492662744600073515092236909361355359472818864859650504087875301429651...
		

References

  • F. W. J. Olver, Asymptotics and Special Functions, Academic Press, ISBN 978-0-12-525856-2, 1974.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 56, page 559.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), this sequence (Bi(0)), A358561 (Bi'(0)), A358564(Gi(0)).

Programs

  • Mathematica
    RealDigits[AiryBi[0], 10, 120][[1]] (* Amiram Eldar, Nov 28 2022 *)
  • PARI
    airy(0)[2]
    
  • PARI
    airy(0)[1]*sqrt(3)
    
  • PARI
    3^(1/3)*gamma(1/3)/(2*Pi)
    
  • SageMath
    airy_bi(0).n(algorithm='scipy', prec=250)

Formula

Bi(0) = A284867*A002194.
Bi(0) = A358564*3.
Bi(0) = 1/(3^(1/6)*A073006).
Bi(0) = A073005/(3^(1/6)*A186706).
Bi(0) = A073005/(3^(1/6)*2*A093602).
Bi(0) = 3^(1/3)*A073005/(2*A000796).
Bi(0) = A252799/(3^(1/6)*BarnesG[5/3]).
Bi(0) = 3^(1/4)/(2^(2/9) * Pi^(1/3) * AGM(2,(sqrt(2+sqrt(3))))^(1/3)), where AGM is the arithmetic-geometric mean.

A358561 Decimal expansion of the derivative Bi'(0), where Bi is the Airy function of the second kind.

Original entry on oeis.org

4, 4, 8, 2, 8, 8, 3, 5, 7, 3, 5, 3, 8, 2, 6, 3, 5, 7, 9, 1, 4, 8, 2, 3, 7, 1, 0, 3, 9, 8, 8, 2, 8, 3, 9, 0, 8, 6, 6, 2, 2, 6, 7, 9, 9, 2, 1, 2, 2, 6, 2, 0, 6, 1, 0, 8, 2, 8, 0, 8, 7, 7, 8, 3, 7, 2, 3, 3, 0, 7, 5, 5, 0, 0, 9, 7, 8, 0, 6, 4, 7, 1, 8, 5, 0, 4
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.44828835735382635791482371039882839086622679921226206108280877837233075...
		

References

  • F. W. J. Olver, Asymptotics and Special Functions, Academic Press, ISBN 978-0-12-525856-2, 1974.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), A358559 (Bi(0)), this sequence (Bi'(0)), A358564 (Gi(0)).

Programs

  • Mathematica
    RealDigits[AiryBi'[0], 10, 120][[1]] (* Amiram Eldar, Nov 28 2022 *)
  • PARI
    derivnum(x=0, airy(x)[2])
    
  • SageMath
    airy_bi_prime(0).n(algorithm='scipy', prec=250)

Formula

Bi'(0) = A284868*A002194.
Bi'(0) = 3*Gi'(0), where Gi' is the derivative of the inhomogeneous Airy function of the first kind.
Bi'(0) = 3^(1/6)/A073005.
Bi'(0) = A073006*3^(1/6)/A186706.
Bi'(0) = A073006*3^(1/6)/2*A093602.
Bi'(0) = 3^(2/3)*A073006/(2*A000796).
Bi'(0) = 3^(1/4)*AGM(2,(sqrt(2+sqrt(3))))^(1/3)/(2^(7/9) * Pi^(2/3)), where AGM is the arithmetic-geometric mean.

A358564 Decimal expansion of Gi(0), where Gi is the inhomogeneous Airy function of the first kind (also called Scorer function).

Original entry on oeis.org

2, 0, 4, 9, 7, 5, 5, 4, 2, 4, 8, 2, 0, 0, 0, 2, 4, 5, 0, 5, 0, 3, 0, 7, 4, 5, 6, 3, 6, 4, 5, 3, 7, 8, 5, 1, 1, 9, 8, 2, 4, 2, 7, 2, 9, 5, 4, 9, 5, 3, 2, 1, 6, 8, 3, 4, 6, 9, 5, 9, 5, 8, 4, 3, 3, 8, 0, 9, 8, 8, 3, 9, 7, 6, 8, 5, 0, 6, 8, 8, 0, 1, 7, 6, 4, 6, 2
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.204975542482000245050307456364537851198242729549532168346959584338098839...
		

References

  • Scorer, R. S., Numerical evaluation of integrals of the form Integral_{x=x1..x2} f(x)*e^(i*phi(x))dx and the tabulation of the function Gi(z)=(1/Pi)*Integral_{u=0..oo} sin(u*z+u^3/3) du, Quart. J. Mech. Appl. Math. 3 (1950), 107-112.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), A358559 (Bi(0)), A358561 (Bi'(0)), this sequence (Gi(0)).

Programs

  • Mathematica
    First[RealDigits[N[ScorerGi[0],90]]] (* Stefano Spezia, Nov 28 2022 *)
  • PARI
    airy(0)[2]/3
    
  • PARI
    1/(3^(7/6)*gamma(2/3))
    
  • PARI
    sqrt(3)*gamma(1/3)/(3^(7/6)*2*Pi)
    
  • PARI
    1/(3^(3/4)*2^(2/9)*Pi^(1/3)*sqrtn(agm(2,(sqrt(2+sqrt(3)))),3))
    
  • SageMath
    1/(3^(7/6)*gamma(2/3)).n(algorithm='scipy', prec=250)

Formula

Gi(0) = A358559/3.
Gi(0) = A284867/A002194.
Gi(0) = Hi(0)/2, where Hi is the inhomogeneous Airy function of the second kind.
Gi(0) = 1/(3^(7/6)*A073006).
Gi(0) = A073005/(3^(7/6)*A186706).
Gi(0) = A073005/(3^(7/6)*2*A093602).
Gi(0) = A073005/(3^(4/6)*2*A000796).
Gi(0) = A252799/(3^(7/6)*BarnesG(5/3)).
Gi(0) = 1/(3^(3/4) * 2^(2/9) * Pi^(1/3) * AGM(2,(sqrt(2+sqrt(3))))^(1/3)), where AGM is the arithmetic-geometric mean.

A203129 Decimal expansion of (2/3)! = Gamma(5/3).

Original entry on oeis.org

9, 0, 2, 7, 4, 5, 2, 9, 2, 9, 5, 0, 9, 3, 3, 6, 1, 1, 2, 9, 6, 8, 5, 8, 6, 8, 5, 4, 3, 6, 3, 4, 2, 5, 2, 3, 6, 7, 9, 5, 5, 1, 5, 1, 0, 7, 0, 4, 5, 2, 9, 1, 3, 2, 2, 6, 2, 6, 8, 1, 6, 4, 5, 3, 0, 9, 1, 8, 8, 6, 4, 3, 6, 0, 1, 1, 6, 1, 6, 9, 4, 4, 5, 0, 5, 5, 6, 0, 9, 8, 6, 3, 5, 3, 1, 5, 2, 7, 4
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.90274529295093361129685868543634252367955151070452913226268...
		

Crossrefs

Cf. A073006.

Programs

Formula

Equals 2*A073006/3. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(3/2)) dx. - Ilya Gutkovskiy, Apr 10 2024
Equals sqrt(Pi)*Gamma(7/3)/(2^(4/3)*Gamma(7/6)). - Gerry Martens, May 01 2024
Equals 4*Pi / (3^(3/2) * Gamma(1/3)). - Vaclav Kotesovec, May 02 2024

A218540 Reduced third-order Patalan numbers.

Original entry on oeis.org

1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
Offset: 0

Views

Author

R. J. Mathar, Nov 01 2012

Keywords

Comments

Obtained by removing powers of 3 in a systematic manner from the Patalan numbers A025748.

Crossrefs

Programs

  • Maple
    A218540 := proc(n)
        option remember;
        if n <=2 then
            1;
        elif n = 3 then
            5 ;
        else
            (n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
            -%/n/(n+2)/(n-1) ;
        end if;
    end proc:
  • Mathematica
    a[n_] := 3^(2*n-2-Floor[n/2]) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = A025748(n)/A108411(n).
D-finite with recurrence n*(n+2)*(n-1)*a(n) + (n-1)*(n-2)*(n+4)*a(n-1) - 3*(3*n-4)*(3*n-7)*(n+2)*a(n-2) - 3*(3*n-10)*(n+4)*(3*n-7)*a(n-3) = 0, n >= 4.
a(n) ~ 3^(2*n-2-floor(n/2)) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025

A322509 Factorial expansion of Gamma(2/3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 6, 6, 0, 3, 1, 11, 7, 6, 6, 14, 1, 8, 12, 15, 8, 17, 8, 1, 13, 15, 3, 4, 10, 16, 25, 1, 25, 22, 6, 3, 19, 17, 8, 10, 25, 37, 29, 17, 35, 19, 24, 25, 30, 31, 4, 7, 51, 49, 14, 51, 45, 54, 0, 26, 34, 41, 56, 57, 16, 15, 63, 4, 51, 42, 13, 35, 12, 15, 66, 22, 13, 43, 14, 78
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			Gamma(2/3) = 1 + 0/2! + 2/3! + 0/4! + 2/5! + 2/6! + 6/7! + 6/8! + ...
		

Crossrefs

Cf. A073006 (decimal expansion), A030652 (continued fraction).
Cf. A068463 (Gamma(3/4)), A068464 (Gamma(1/4)), A322508 (Gamma(1/3)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Gamma(2/3))] cat [Floor(Factorial(n)*Gamma(2/3)) - n*Floor(Factorial((n-1))*Gamma(2/3)) : n in [2..80]];
    
  • Mathematica
    With[{b = Gamma[2/3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = gamma(2/3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=gamma(2/3);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]

A059189 Engel expansion of Gamma(2/3) = 1.35412.

Original entry on oeis.org

1, 3, 17, 17, 50, 79, 796, 3687, 7074, 9098, 95915, 118514, 133188, 186305, 209314, 666015, 5735240, 7685979, 11174747, 97173279, 269061009, 569125952, 932655002, 7282946876, 9919537325, 52110120678, 70254144261
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A073006.

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

A242010 Decimal expansion of sum_{k>=0} (log(3k+1)/(3k+1)-log(3k+2)/(3k+2)).

Original entry on oeis.org

2, 2, 2, 6, 6, 2, 9, 8, 6, 9, 6, 8, 6, 0, 1, 5, 0, 9, 4, 8, 6, 6, 6, 0, 2, 6, 2, 7, 6, 4, 7, 4, 4, 3, 6, 1, 8, 8, 6, 5, 7, 1, 6, 1, 6, 0, 5, 7, 1, 5, 2, 4, 7, 8, 5, 1, 2, 9, 0, 0, 2, 6, 0, 0, 5, 3, 0, 7, 8, 9, 7, 6, 5, 9, 7, 2, 2, 0, 2, 4, 7, 4, 8, 2, 1, 8, 3, 4, 0, 4, 3, 2, 6, 7, 8, 0, 5, 4, 0, 8, 3, 1, 8, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			-0.22266298696860150948666026276474436188657161605715247851290026...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/Sqrt[3])*(Log[Gamma[1/3]/Gamma[2/3]] - (1/3)*(EulerGamma + Log[2*Pi])), 10, 104] // First

Formula

(Pi/sqrt(3))*(log(Gamma(1/3)/Gamma(2/3)) - (1/3)*(gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.

A255902 Decimal expansion of the limit as n tends to infinity of n*s_n, where the s_n are the hexagonal circle-packing rigidity constants.

Original entry on oeis.org

4, 4, 5, 1, 6, 5, 0, 6, 9, 8, 0, 8, 9, 2, 2, 1, 5, 3, 8, 2, 4, 7, 9, 9, 8, 7, 8, 2, 7, 4, 0, 1, 2, 5, 5, 0, 9, 9, 6, 9, 3, 8, 7, 5, 0, 3, 9, 7, 4, 5, 7, 6, 8, 7, 3, 6, 3, 9, 6, 8, 6, 5, 2, 9, 9, 1, 9, 2, 4, 1, 3, 1, 8, 8, 3, 6, 0, 8, 6, 6, 4, 1, 2, 7, 5, 3, 0, 2, 3, 1, 7, 7, 8, 3, 7, 0, 0, 1, 3, 2, 9, 2
Offset: 1

Views

Author

Jean-François Alcover, Mar 10 2015

Keywords

Examples

			4.4516506980892215382479987827401255099693875...
		

Crossrefs

Cf. A073005 (gamma(1/3)), A073006 (gamma(2/3)).

Programs

  • Mathematica
    RealDigits[(2^(4/3)/3)*Gamma[1/3]^2/Gamma[2/3], 10, 102] // First

Formula

(2^(4/3)/3)*gamma(1/3)^2/gamma(2/3).
Equals 4/R, where R = 2^(2/3)*gamma(2/3)/(gamma(1/3)*gamma(4/3)) is the conformal radius in a mapping from the unit disk to the unit side hexagon satisfying certain conditions.
Previous Showing 21-30 of 33 results. Next