A366327
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^3).
Original entry on oeis.org
1, 2, -5, 33, -260, 2263, -20979, 203124, -2030121, 20786694, -216928144, 2298911699, -24673591005, 267644087524, -2929602893537, 32317666058508, -358931896710948, 4010200327457883, -45040693394259858, 508253687784232108, -5759468659295939684
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(n+2*k-2, n-k)/(4*k-1));
A366328
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^4).
Original entry on oeis.org
1, 2, -7, 60, -612, 6898, -82806, 1038076, -13431940, 178040315, -2405137161, 32992706368, -458336721104, 6435090557964, -91167680664004, 1301665779507128, -18710805300530504, 270559054510943509, -3932893180646204203, 57437414168562779574, -842365843304975785062
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(n+3*k-2, n-k)/(5*k-1));
A216359
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, 3, 13, 32, 147, 445, 2067, 7019, 32590, 119209, 551551, 2125429, 9795863, 39221165, 180177403, 742575760, 3403131833, 14342166121, 65626369612, 281459129188, 1286834885967, 5596229192396, 25580269950635, 112492633046446, 514323765191879, 2282371511598955
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + 445*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 10*x^2 + 38*x^3 + 125*x^4 + 500*x^5 + 1839*x^6 +...
A(x)^3 = 1 + 6*x + 21*x^2 + 83*x^3 + 315*x^4 + 1269*x^5 + 5061*x^6 +...
where A(x) = (1-x^2)*A(x)^2 - x*A(x)^3 - x.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 1/A(x)^3)*x*A(x) + (1 + 2^2/A(x)^3 + 1/A(x)^6)*x^2*A(x)^2/2 +
(1 + 3^2/A(x)^3 + 3^2/A(x)^6 + 1/A(x)^9)*x^3*A(x)^3/3 +
(1 + 4^2/A(x)^3 + 6^2/A(x)^6 + 4^2/A(x)^9 + 1/A(x)^12)*x^4*A(x)^4/4 +
(1 + 5^2/A(x)^3 + 10^2/A(x)^6 + 10^2/A(x)^9 + 5^2/A(x)^12 + 1/A(x)^15)*x^5*A(x)^5/5 +...
-
S:= series(RootOf(x+y+x^2*y^2-y^2+x*y^3, y, 1), x, 41):
seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1-x^2)*AGF^2 - x*AGF^3 - x - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^2)*(1 + x/(A+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(3*j))*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
A349016
G.f. A(x) satisfies: A(x) = 1 + x * A(-x) / (1 - x) + x * A(x)^2.
Original entry on oeis.org
1, 2, 3, 12, 26, 125, 317, 1642, 4492, 24188, 69174, 381613, 1123923, 6304781, 18962485, 107682542, 329007674, 1885923378, 5833166568, 33685017384, 105214504816, 611241171298, 1924588709710, 11236434464097, 35617302886643, 208815253200975, 665665428686531
Offset: 0
-
nmax = 26; A[] = 0; Do[A[x] = 1 + x A[-x]/(1 - x) + x A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = Sum[a[k] ((-1)^k + a[n - k - 1]), {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
A364329
G.f. satisfies A(x) = (1 + x^3) * (1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 2, 6, 17, 52, 167, 558, 1912, 6683, 23736, 85426, 310861, 1141837, 4227938, 15764474, 59140089, 223062670, 845388258, 3217750229, 12295043520, 47144444476, 181349473833, 699629022954, 2706327445312, 10494497061015, 40787775234746, 158859378070721
Offset: 0
-
A364329 := proc(n)
add( binomial(2*n-6*k+1,k) * binomial(2*n-6*k+1,n-3*k)/(2*n-6*k+1),k=0..n/3) ;
end proc:
seq(A364329(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
nmax = 27; A[_] = 1;
Do[A[x_] = (1 + x^3)*(1 + x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-6*k+1, k)*binomial(2*n-6*k+1, n-3*k)/(2*n-6*k+1));
A364330
G.f. satisfies A(x) = (1 + x^4) * (1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 2, 5, 15, 45, 142, 464, 1556, 5327, 18532, 65326, 232826, 837589, 3037472, 11092143, 40753626, 150541422, 558762382, 2082871613, 7794301294, 29269317708, 110263451242, 416595676681, 1578183767068, 5993326380378, 22812048907856, 87010994947971, 332531385362972
Offset: 0
-
A364330 := proc(n)
add( binomial(2*n-8*k+1,k) * binomial(2*n-8*k+1,n-4*k)/(2*n-8*k+1),k=0..n/4) ;
end proc:
seq(A364330(n),n=0..80); # R. J. Mathar, Jul 25 2023
-
nmax = 28; A[_] = 1;
Do[A[x_] = (1 + x^4)*(1 + x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n\4, binomial(2*n-8*k+1, k)*binomial(2*n-8*k+1, n-4*k)/(2*n-8*k+1));
A366236
G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^2*A(x)^2.
Original entry on oeis.org
1, 2, 6, 25, 110, 520, 2566, 13073, 68244, 363129, 1962304, 10739914, 59411546, 331652408, 1865903040, 10569319231, 60227702736, 345015430415, 1985747398748, 11477353063881, 66590427901454, 387685469752989, 2264180109124196, 13261401158297918
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*k+1, n-k)*binomial(2*k, k)/(k+1));
A366237
G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^3*A(x)^2.
Original entry on oeis.org
1, 2, 7, 33, 161, 843, 4601, 25896, 149254, 876480, 5225616, 31547730, 192470212, 1184804588, 7349888208, 45902094845, 288368474907, 1821096958308, 11554270204142, 73615309821574, 470795634833760, 3021222108762826, 19448517295201332
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, n-k)*binomial(2*k, k)/(k+1));
A366238
G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^4*A(x)^2.
Original entry on oeis.org
1, 2, 8, 42, 224, 1281, 7630, 46816, 294008, 1880588, 12209474, 80251889, 532988530, 3571260662, 24112334292, 163887278097, 1120445503036, 7699924478714, 53160597794588, 368549236730128, 2564649436452878, 17907555498455680, 125426544531794332
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, n-k)*binomial(2*k, k)/(k+1));
Comments