cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A073228 Decimal expansion of (e^e)^e.

Original entry on oeis.org

1, 6, 1, 8, 1, 7, 7, 9, 9, 1, 9, 1, 2, 6, 5, 3, 5, 0, 1, 6, 6, 8, 6, 9, 1, 2, 2, 5, 4, 8, 3, 6, 1, 0, 1, 9, 5, 6, 9, 2, 2, 8, 8, 1, 0, 3, 4, 7, 3, 3, 5, 3, 3, 6, 0, 5, 3, 0, 0, 1, 6, 9, 9, 4, 5, 6, 1, 5, 6, 0, 7, 5, 4, 1, 6, 5, 8, 8, 1, 7, 8, 3, 0, 0, 0, 5, 3, 7, 3, 7, 7, 3, 4, 8, 4, 2, 3, 1, 7, 8, 0, 0, 9, 4, 0
Offset: 4

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			1618.17799191265350166869122548...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A073227 (e^e^e), A073231 ((1/e)^(1/e)^(1/e)), A073232 (((1/e)^(1/e))^(1/e)).

Programs

  • Magma
    Exp(Exp(1))^Exp(1); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[(E^E)^E, 10, 120][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • PARI
    exp(exp(1))^exp(1)
    

Formula

(e^e)^e = e^e^2. - Franklin T. Adams-Watters, Jun 20 2014

A234473 Decimal expansion of exp(exp(1)-1).

Original entry on oeis.org

5, 5, 7, 4, 9, 4, 1, 5, 2, 4, 7, 6, 0, 8, 8, 0, 6, 2, 3, 9, 6, 6, 9, 7, 5, 9, 2, 2, 7, 4, 0, 4, 8, 4, 3, 0, 5, 7, 0, 6, 0, 9, 3, 0, 9, 7, 5, 9, 4, 7, 0, 0, 2, 1, 1, 9, 2, 9, 8, 2, 3, 7, 8, 3, 8, 5, 7, 0
Offset: 1

Views

Author

Richard R. Forberg, Dec 26 2013

Keywords

Comments

Derived from an infinite sum of the Bell numbers (see formula below).
May also be written as exp(exp(1))/exp(1) = e^e/e.

Examples

			5.5749415247608806239669759227404843057060930975947002119298237838570...
		

Crossrefs

Cf. A000110, A001113 (e), A073226 (e^e), A274169.

Programs

  • Mathematica
    RealDigits[Exp[E-1], 10, 100][[1]] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    exp(exp(1)-1)

Formula

Equals Sum_{n>=0} Bell(n)/n!, where Bell(n) = A000110(n).
Equals Product_{k=1..oo} exp(1/k!). - Christoph B. Kassir, Dec 04 2021

A016066 a(n) = round(e^(e^n)).

Original entry on oeis.org

3, 15, 1618, 528491311, 514843556263457213182266, 28511235679461510605581038657982805983853648817939444953417128837
Offset: 0

Views

Author

Keywords

Comments

a(6) is a 176-digit number. - Jon E. Schoenfield, Sep 04 2017

Examples

			a(0) = round(e) = round(2.718281828459...) = 3.
a(1) = round(e^e) = round(15.154262241479264...) = 15.
a(2) = round(e^(e^2)) = round(1618.1779919126535...) = 1618.
		

Crossrefs

Programs

  • Mathematica
    Table[Round[E^(E^n)], {n, 0, 5}] (* Harvey P. Dale, Oct 21 2016 *)

Extensions

Corrected by N. J. A. Sloane, Aug 16 2004

A194622 Decimal expansion of x with 0 < x < y and x^y = y^x = 17.

Original entry on oeis.org

1, 7, 8, 3, 8, 1, 4, 2, 5, 1, 7, 7, 0, 4, 6, 1, 9, 2, 1, 9, 0, 1, 2, 7, 6, 7, 1, 1, 3, 1, 3, 2, 8, 3, 7, 9, 1, 7, 0, 7, 3, 6, 5, 8, 3, 4, 6, 7, 9, 5, 1, 1, 8, 2, 0, 8, 7, 8, 2, 4, 7, 7, 6, 8, 7, 5, 6, 4, 2, 8, 5, 4, 6, 2, 2, 2, 4, 3, 7, 1, 0, 2, 8, 6, 1, 2, 6, 6, 2, 2, 2, 7, 8, 2, 3, 2, 3, 7, 2, 7
Offset: 1

Views

Author

Jonathan Sondow, Aug 30 2011

Keywords

Comments

Given z > 0, there exist positive real numbers x < y with x^y = y^x = z, if and only if z > e^e. In that case, (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for some t > 0. For example, t = 1 gives 2^4 = 4^2 = 16 > e^e. When x^y = y^x = 17, at least one of x and y is transcendental. See Sondow and Marques 2010, pp. 155-157.

Examples

			x=1.7838142517704619219012767113132837917073658346795118208782477687564285462224371...
		

Crossrefs

Cf. A073226 (e^e), A194556 ((9/4)^(27/8) = (27/8)^(9/4)), A194557 (sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3)), A194623 (y with 0 < x < y and x^y = y^x = 17).

Programs

  • Mathematica
    x[t_] := (1 + 1/t)^t; y[t_] := (1 + 1/t)^(t + 1); t = t/. FindRoot[ x[t]^y[t] == 17, {t, 1}, WorkingPrecision -> 120]; RealDigits[ x[t], 10, 100] // First

A194623 Decimal expansion of y with 0 < x < y and x^y = y^x = 17.

Original entry on oeis.org

4, 8, 9, 5, 3, 6, 7, 9, 5, 5, 5, 4, 6, 1, 1, 3, 4, 7, 1, 9, 6, 7, 1, 9, 3, 3, 8, 7, 2, 2, 9, 8, 3, 5, 8, 4, 9, 4, 7, 2, 7, 3, 1, 9, 5, 2, 8, 0, 9, 3, 7, 2, 4, 4, 3, 6, 3, 0, 8, 4, 6, 6, 4, 9, 2, 9, 5, 5, 4, 1, 2, 1, 0, 4, 9, 5, 4, 0, 9, 2, 9, 3, 6, 5, 3, 4, 1, 1, 4, 0, 8, 0, 1, 2, 1, 7, 9, 2, 6, 1
Offset: 1

Views

Author

Jonathan Sondow, Aug 30 2011

Keywords

Comments

Given z > 0, there exist positive real numbers x < y with x^y = y^x = z, if and only if z > e^e. In that case, (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for some t > 0. For example, t = 1 gives 2^4 = 4^2 = 16 > e^e. When x^y = y^x = 17, at least one of x and y is transcendental. See Sondow and Marques 2010, pp. 155-157.

Examples

			y=4.89536795554611347196719338722983584947273195280937244363084664929554121...
		

Crossrefs

Cf. A073226 (e^e), A194556 ((9/4)^(27/8) = (27/8)^(9/4)), A194557 (sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3)), A194622 (x with 0 < x < y and x^y = y^x = 17).

Programs

  • Mathematica
    x[t_] := (1 + 1/t)^t; y[t_] := (1 + 1/t)^(t + 1); t = t/. FindRoot[x[t]^y[t] == 17, {t, 1}, WorkingPrecision -> 120]; RealDigits[y[t], 10, 100] // First

A258500 Decimal expansion of the nontrivial real solution of x^(3/2) = (3/2)^x.

Original entry on oeis.org

7, 4, 0, 8, 7, 6, 4, 6, 8, 6, 9, 6, 5, 7, 7, 4, 5, 2, 1, 9, 5, 7, 2, 9, 5, 0, 2, 8, 5, 1, 0, 6, 1, 4, 3, 8, 9, 8, 0, 4, 1, 7, 1, 1, 4, 1, 0, 7, 4, 0, 0, 0, 1, 5, 1, 8, 2, 2, 7, 1, 8, 3, 9, 3, 7, 9, 1, 7, 0, 7, 1, 7, 1, 0, 0, 1, 3, 8, 4, 0, 2, 2, 8, 4, 2, 1, 8, 2, 3, 1, 1, 9, 2, 3, 0, 4, 7, 0, 6, 6, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			x0 = 7.408764686965774521957295028510614389804171141074...
z = x0^(3/2) = 20.16595073003535058942970947434890012034363496 ...
z > e^e = 15.15426224... = A073226.
		

Crossrefs

Cf. A073226, A194556, A194557, A258501 (x^(5/2)=(5/2)^x), A258502 (x^(7/2)=(7/2)^x).

Programs

  • Mathematica
    x0 = -((x*ProductLog[-1, -(Log[x]/x)])/Log[x]) /. x -> 3/2; RealDigits[x0, 10, 101] // First
    RealDigits[x/.FindRoot[x^(3/2)==(3/2)^x,{x,7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Dec 07 2024 *)

Formula

x0 = -((x*ProductLog(-1, -(log(x)/x)))/log(x)), with x = 3/2, where ProductLog is the Lambert W function.

A258501 Decimal expansion of the nontrivial real solution of x^(5/2) = (5/2)^x.

Original entry on oeis.org

2, 9, 7, 0, 2, 8, 7, 0, 5, 0, 2, 5, 5, 7, 5, 8, 7, 7, 9, 3, 7, 9, 9, 8, 4, 2, 9, 1, 0, 3, 1, 6, 8, 6, 3, 7, 3, 2, 3, 9, 5, 0, 4, 3, 9, 6, 3, 2, 7, 1, 5, 0, 2, 5, 4, 5, 3, 4, 5, 9, 0, 1, 4, 7, 2, 9, 3, 6, 1, 2, 1, 9, 6, 3, 5, 1, 0, 9, 9, 8, 5, 2, 8, 9, 3, 2, 8, 9, 1, 5, 5, 0, 9, 2, 8, 0, 9, 1, 4, 1, 3, 8
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			x0 = 2.97028705025575877937998429103168637323950439632715025453459...
z = x0^(5/2) = 15.20533715980107653442006557792026842686895921352582...
z > e^e = 15.15426224... = A073226.
		

Crossrefs

Cf. A073226, A194556, A194557, A258500 (x^(3/2)=(3/2)^x), A258502 (x^(7/2)=(7/2)^x).

Programs

  • Mathematica
    x0 = -((x*ProductLog[-1, -(Log[x]/x)])/Log[x]) /. x -> 5/2; RealDigits[x0, 10, 102] // First

Formula

x0 = -((x*ProductLog(-1, -(log(x)/x)))/log(x)), with x = 5/2, where ProductLog is the Lambert W function.

A258502 Decimal expansion of the nontrivial real solution of x^(7/2) = (7/2)^x.

Original entry on oeis.org

2, 1, 8, 9, 6, 9, 7, 5, 5, 1, 1, 7, 5, 6, 1, 3, 5, 0, 4, 8, 0, 8, 3, 1, 6, 8, 1, 4, 4, 5, 7, 3, 1, 3, 0, 5, 4, 9, 5, 2, 0, 3, 1, 9, 8, 3, 6, 5, 1, 0, 3, 9, 7, 9, 3, 0, 0, 8, 6, 4, 3, 0, 2, 6, 4, 2, 3, 7, 7, 0, 7, 6, 7, 9, 4, 7, 7, 2, 6, 4, 7, 7, 6, 5, 1, 2, 9, 6, 4, 1, 4, 3, 9, 6, 7, 8, 9, 3, 9, 5, 2, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			x0 = 2.189697551175613504808316814457313054952031983651039793...
z = x0^(7/2) = 15.53618787439250843837688346448101455506861788472622...
z > e^e = 15.15426224... = A073226.
		

Crossrefs

Cf. A073226, A194556, A194557, A258500 (x^(3/2)=(3/2)^x), A258501 (x^(5/2)=(5/2)^x).

Programs

  • Mathematica
    x0 = -((x*ProductLog[-(Log[x]/x)])/Log[x]) /. x -> 7/2; RealDigits[x0, 10, 101] // First
    RealDigits[x/.FindRoot[x^(7/2)==(7/2)^x,{x,2},WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Apr 19 2019 *)

Formula

x0 = -((x*ProductLog(-(log(x)/x)))/log(x)), with x = 7/2, where ProductLog is the Lambert W function.

A334399 Decimal expansion of sinh(e).

Original entry on oeis.org

7, 5, 4, 4, 1, 3, 7, 1, 0, 2, 8, 1, 6, 9, 7, 5, 8, 2, 6, 3, 4, 1, 8, 2, 0, 0, 4, 2, 5, 1, 6, 5, 3, 2, 7, 4, 0, 2, 9, 4, 9, 8, 5, 7, 4, 4, 3, 0, 1, 6, 7, 1, 6, 6, 6, 3, 6, 9, 1, 3, 6, 4, 3, 2, 1, 7, 4, 0, 4, 7, 3, 2, 1, 8, 5, 0, 0, 8, 9, 0, 6, 2, 2, 5, 2, 1, 8, 4, 3, 6, 2, 9, 5, 2, 2, 5, 0, 9, 9, 6, 3, 8, 2, 9, 5, 6, 0, 0, 1, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Examples

			(e^e - e^(-e))/2 = 7.54413710281697582634182004251653274...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[E], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} e^(2*k+1)/(2*k+1)!.

A334400 Decimal expansion of cosh(e).

Original entry on oeis.org

7, 6, 1, 0, 1, 2, 5, 1, 3, 8, 6, 6, 2, 2, 8, 8, 3, 6, 3, 4, 1, 8, 6, 1, 0, 2, 3, 0, 1, 1, 3, 3, 7, 9, 1, 6, 5, 2, 3, 3, 5, 6, 2, 7, 9, 2, 5, 5, 4, 4, 6, 8, 1, 0, 2, 7, 7, 1, 6, 0, 9, 9, 7, 3, 7, 4, 0, 7, 8, 3, 6, 5, 1, 8, 8, 0, 8, 4, 5, 3, 7, 0, 3, 5, 6, 2, 7, 2, 6, 0, 5, 4, 0, 5, 6, 2, 2, 4, 6, 4, 1, 2, 8, 6, 3, 1, 2, 6, 7, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Examples

			(e^e + e^(-e))/2 = 7.6101251386622883634186102301133791...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[E], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} e^(2*k)/(2*k)!.
Previous Showing 11-20 of 42 results. Next