cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A178394 Decimal expansion of e!.

Original entry on oeis.org

4, 2, 6, 0, 8, 2, 0, 4, 7, 6, 3, 5, 7, 0, 0, 3, 3, 8, 1, 7, 0, 0, 1, 2, 1, 2, 2, 4, 6, 4, 5, 7, 0, 2, 4, 6, 4, 9, 3, 3, 4, 2, 4, 3, 7, 3, 9, 5, 9, 3, 2, 1, 9, 7, 4, 9, 1, 1, 6, 0, 4, 8, 9, 3, 5, 9, 9, 3, 4, 4, 3, 4, 8, 7, 2, 7, 5, 0, 0, 0, 8, 5, 3, 4, 8, 8, 8, 7, 5, 3, 7, 0, 1, 5, 6, 9, 4, 7, 7, 2, 8, 9, 9, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Gamma(e+1).

Examples

			4.2608204763570033817001212246457024649334243739593219749116...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[E!,200]]

Formula

Equals Integral_{x>=0} x^e/e^x dx. - Alois P. Heinz, Aug 27 2015
Equals lim_{n->oo} n^2 * Integral_{x=n!^(1/n)..(n+1)!^(1/(n+1))} Gamma(n*x) dx (Bătinetu-Giurgiu, 2014). - Amiram Eldar, Mar 26 2022

A236098 Decimal expansion of the real part of -Pi^(i*Pi).

Original entry on oeis.org

8, 9, 8, 4, 0, 0, 5, 7, 9, 7, 5, 7, 7, 4, 3, 6, 4, 5, 6, 6, 8, 5, 8, 0, 3, 7, 0, 5, 0, 3, 1, 5, 1, 4, 1, 7, 5, 4, 8, 8, 9, 9, 9, 4, 9, 4, 0, 5, 0, 1, 1, 6, 6, 0, 8, 0, 8, 3, 3, 8, 8, 7, 8, 3, 3, 8, 3, 4, 2, 7, 2, 7, 5, 5, 4, 2, 8, 2, 2, 4, 0, 1, 8, 5, 7, 3, 3, 3, 9, 1, 7, 7, 4, 5, 0, 8, 8, 7, 2, 5, 8, 9, 9, 0, 9
Offset: 0

Views

Author

Stanislav Sykora, Jan 19 2014

Keywords

Comments

The imaginary part is in A236099.

Examples

			0.898400579757743645668580370503151417548899949405011660808338878...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cos[Log[Pi]*Pi], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals -real(Pi^(i*Pi)) = -cos(Pi*log(Pi)) = -cos(A231736).

A236099 Decimal expansion of the imaginary part of -Pi^(I*Pi).

Original entry on oeis.org

4, 3, 9, 1, 7, 6, 9, 5, 5, 5, 5, 5, 4, 4, 5, 8, 9, 4, 3, 6, 9, 4, 5, 4, 7, 1, 3, 2, 3, 8, 3, 9, 6, 0, 9, 0, 1, 3, 6, 2, 1, 0, 0, 9, 6, 9, 7, 8, 1, 9, 0, 1, 4, 9, 5, 9, 5, 2, 3, 4, 1, 6, 8, 1, 0, 5, 3, 7, 4, 0, 2, 9, 4, 8, 8
Offset: 0

Views

Author

Stanislav Sykora, Jan 19 2014

Keywords

Comments

The real part is in A236098.

Examples

			0.4391769555554458943694547132383960901362100969781901495952341681...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Im[-Pi^(I Pi)],10,120][[1]] (* Harvey P. Dale, Jan 02 2018 *)

Formula

-imag(Pi^(I*Pi)) = -sin(Pi*log(Pi)) = -sin(A231736).

A236100 Decimal expansion of the real part of Pi^(I/Pi).

Original entry on oeis.org

9, 3, 4, 3, 4, 5, 3, 0, 3, 6, 7, 8, 6, 3, 7, 6, 9, 4, 2, 6, 2, 2, 4, 0, 8, 6, 0, 4, 5, 4, 4, 2, 1, 1, 8, 6, 2, 4, 0, 1, 8, 5, 1, 2, 1, 3, 8, 9, 9, 3, 3, 7, 5, 1, 4, 3, 6, 7, 4, 3, 9, 5, 8, 4, 1, 1, 4, 8, 5, 9, 7, 1
Offset: 0

Views

Author

Stanislav Sykora, Jan 19 2014

Keywords

Comments

The imaginary part is in A236101.

Examples

			0.9343453036786376942622408604544211862401851213899337514...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[Pi^(I/Pi)],10,120][[1]] (* Harvey P. Dale, Aug 02 2017 *)

Formula

real(Pi^(I/Pi)) = cos(log(Pi)/Pi) = cos(A231737).

A236101 Decimal expansion of the imaginary part of Pi^(i/Pi).

Original entry on oeis.org

3, 5, 6, 3, 6, 8, 9, 8, 5, 0, 3, 3, 3, 1, 3, 8, 9, 9, 9, 0, 7, 6, 9, 1, 8, 3, 7, 3, 7, 8, 6, 5, 9, 4, 0, 5, 7, 8, 8, 4, 5, 8, 7, 2, 7, 9, 0, 0, 6, 5, 9, 3, 0, 8, 2, 9, 9, 6, 3, 0, 4, 7, 9, 2, 3, 3, 0, 8, 9, 9, 0, 5, 6, 1, 7, 2, 4, 3, 3, 7, 3, 1, 1, 1, 3, 0, 9, 2, 5, 9, 0, 7, 9, 1, 7, 6, 0, 0, 6, 6, 0, 2, 5, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Jan 19 2014

Keywords

Comments

The real part is in A236100.

Examples

			0.35636898503331389990769183737865940578845872790065930829963...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[Log[Pi]/Pi], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals imag(Pi^(i/Pi)) = sin(log(Pi)/Pi) = sin(A231737).

A073239 Decimal expansion of (1/Pi)^Pi.

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 1, 2, 3, 2, 9, 8, 1, 0, 6, 1, 1, 9, 5, 5, 6, 2, 7, 0, 8, 5, 9, 0, 9, 6, 5, 9, 4, 4, 5, 4, 4, 2, 5, 1, 1, 4, 5, 3, 7, 4, 4, 8, 3, 0, 7, 7, 6, 3, 3, 8, 6, 7, 9, 1, 3, 2, 6, 4, 0, 2, 3, 9, 5, 8, 0, 1, 2, 3, 0, 3, 9, 6, 7, 2, 0, 9, 0, 1, 7, 6, 6, 9, 3, 4, 2, 8, 9, 6, 1, 9, 4, 7, 0, 6, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

(1/Pi)^Pi = Pi^(-Pi) = 1/(Pi^Pi) (reciprocal of A073233).

Examples

			0.02742569312329810611955627085...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073238 (Pi^(1/Pi)), A073240 ((1/Pi)^(1/Pi)), A073233 (Pi^Pi).

Programs

  • Mathematica
    Join[{0},RealDigits[(1/Pi)^Pi,10,120][[1]]] (* Harvey P. Dale, Nov 30 2011 *)
  • PARI
    (1/Pi)^Pi

A073237 a(n) = ceiling(Pi^Pi^...^Pi), where Pi appears n times.

Original entry on oeis.org

1, 4, 37, 1340164183006357436
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Decimal expansions (before taking ceiling) of Pi (A000796), Pi^Pi (A073233) and Pi^Pi^Pi (A073234) correspond to a(1), a(2) and a(3), respectively. See A073236 for same sequence rounded to nearest integer. This sequence is similar to A004002, which deals with e (but rounds).
a(4) has 666262452970848504 digits. - Martin Renner, Aug 19 2023

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073236 (Pi^Pi^...^Pi, n times, rounded), A004002 (Benford numbers), A056072 (similar to A004002 but takes floor).

Programs

  • Maple
    p:= n-> `if`(n=0, 1, Pi^p(n-1)):
    a:= n-> ceil(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • PARI
    p=0; for(n=0,3, p=Pi^p; print1(ceil(p),",")) \\ n=4 produces too large an exponent for PARI.

Formula

a(n) = ceiling(Pi^Pi^...^Pi), where Pi occurs n times, a(0) = 1 (=Pi^0).

A202953 Decimal expansion of x^x with x=Pi^Pi.

Original entry on oeis.org

8, 8, 7, 4, 5, 5, 1, 7, 2, 1, 8, 3, 1, 2, 4, 2, 9, 5, 8, 7, 4, 6, 3, 1, 4, 5, 5, 2, 2, 5, 4, 3, 4, 6, 0, 2, 6, 8, 8, 4, 1, 2, 8, 6, 6, 7, 6, 5, 4, 6, 6, 1, 2, 5, 0, 0, 5, 1, 5, 8, 8, 5, 4, 8, 4, 2, 8, 0, 1, 2, 9, 0, 2, 0, 5, 5, 6, 3, 7, 8, 1, 8, 9, 4, 7, 9, 3, 4, 2, 7, 0, 2, 1, 6, 5, 3, 4, 3, 3, 8
Offset: 57

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Examples

			887455172183124295874631455225434602688412866765466125005.158854842801290205563781894793427...
		

Crossrefs

Cf. A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073235 ((Pi^Pi)^Pi), A202949 ((e^e)^(e^e)).

Programs

  • Mathematica
    With[{x=Pi^Pi},RealDigits[x^x,10,120][[1]]] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    p(x)=x^x /* then type p(p(Pi)) */

A260634 Decimal expansion of 4^Pi.

Original entry on oeis.org

7, 7, 8, 8, 0, 2, 3, 3, 6, 4, 8, 3, 8, 8, 1, 1, 5, 1, 0, 7, 0, 2, 0, 8, 3, 4, 7, 7, 8, 5, 9, 7, 6, 5, 9, 7, 9, 6, 3, 2, 1, 8, 9, 8, 7, 6, 9, 2, 0, 0, 5, 0, 8, 7, 4, 6, 4, 0, 5, 9, 1, 9, 9, 8, 3, 1, 4, 9, 0, 0, 1, 4, 6, 7, 7, 8, 4, 4, 2, 1, 4, 4, 7, 8, 0, 5, 7, 7, 5, 1, 9, 1, 7, 0, 3, 8, 4, 3, 2, 8
Offset: 2

Views

Author

Li GAN, Nov 11 2015

Keywords

Examples

			77.880233648...
		

Crossrefs

Cf. A217459 (2^Pi), A260629 (3^Pi), A073233, A260635.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*4^pi))); // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    First@ RealDigits@ N[4^Pi, 120] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    4^Pi
    
  • PARI
    { default(realprecision, 100); x=(4^Pi)/10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 29 2015
    

Extensions

More digits from Altug Alkan, Nov 11 2015

A260635 Decimal expansion of 5^Pi.

Original entry on oeis.org

1, 5, 6, 9, 9, 2, 5, 4, 5, 3, 0, 8, 8, 6, 5, 9, 0, 7, 5, 7, 8, 4, 5, 9, 1, 9, 8, 8, 3, 2, 6, 4, 8, 9, 1, 3, 1, 3, 9, 1, 4, 1, 4, 7, 4, 6, 4, 4, 7, 2, 6, 4, 5, 9, 4, 6, 9, 0, 5, 9, 7, 1, 1, 8, 6, 3, 3, 7, 8, 4, 6, 5, 2, 5, 5, 2, 3, 0, 1, 7, 9, 4, 4, 9, 0, 8, 4, 1, 8, 9, 6, 2, 6, 0, 5, 3, 0, 7, 6, 1
Offset: 3

Views

Author

Li GAN, Nov 11 2015

Keywords

Examples

			156.99254530...
		

Crossrefs

Cf. A217459 (2^Pi), A260629 (3^Pi), A073233, A260634.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*5^pi))); // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    First@ RealDigits@ N[5^Pi, 120] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    5^Pi
    
  • PARI
    { default(realprecision, 100); x=(5^Pi)/100; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 29 2015
    

Extensions

More digits from Altug Alkan, Nov 11 2015
Previous Showing 11-20 of 24 results. Next