cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A379309 Number of strict integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(9) = 2 through a(15) = 7 partitions:
  (5,4)  (10)   (11)   (9,3)  (13)     (14)     (15)
  (8,1)  (6,4)  (7,4)         (8,5)    (8,6)    (8,7)
         (8,2)  (8,3)         (12,1)   (9,5)    (9,6)
         (9,1)  (9,2)         (8,4,1)  (10,4)   (11,4)
                                       (12,2)   (12,3)
                                       (8,4,2)  (8,4,3)
                                       (9,4,1)  (9,4,2)
		

Crossrefs

If all parts are squarefree we have A087188, non-strict A073576 (ranks A302478).
If no parts are squarefree we have A256012, non-strict A114374 (ranks A379307).
For composite instead of squarefree we have A379303, non-strict A379302 (ranks A379301).
For prime instead of squarefree we have A379305, non-strict A379304 (ranks A331915).
The non-strict version is A379308, ranks A379316.
For old prime instead of squarefree we have A379315, non-strict A379314 (ranks A379312).
Ranked by A379316 /\ A005117 = squarefree positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
  • PARI
    lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A378085 First differences of A070321 (greatest squarefree number <= n).

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 0, 0, 3, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 0, 3, 0, 0, 3, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 0, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 3, 1, 0, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Examples

			The greatest squarefree number <= 50 is 47, and the greatest squarefree number <= 51 is 51, so a(51) = 4.
		

Crossrefs

Ones are A007674.
Zeros are A013929 - 1.
Twos are A280892.
Positions of first appearances are A020755 - 1 (except first term).
First-differences of A070321.
The nonsquarefree restriction is A378034, differences of A378032.
For nonsquarefree numbers we have A378036, differences of A378033.
The opposite restriction to primes is A378037, differences of A112926.
The restriction to primes is A378038, differences of A112925.
The nonsquarefree opposite is A378039, restriction A377784.
The opposite version is A378087.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A378087 First-differences of A067535 (least positive integer >= n that is squarefree).

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 3, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Does this contain all nonnegative integers? The positions of first appearances begin: 4, 1, 3, 7, 47, 241, 843, 22019, 217069, ...

Crossrefs

Ones are A007674.
Zeros are A013929, complement A005117.
Positions of first appearances are A020754 (except first term) = A045882 - 1.
First-differences of A067535.
Twos are A280892.
For prime-powers we have A377780, differences of A000015.
The nonsquarefree opposite is A378036, differences of A378033.
The restriction to primes + 1 is A378037 (opposite A378038), differences of A112926.
For nonsquarefree numbers we have A378039, see A377783, A377784, A378040.
The opposite is A378085, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A073248 Squarefree numbers k such that k+1 is also squarefree, but k-1 and k+2 are not.

Original entry on oeis.org

10, 46, 61, 73, 82, 118, 122, 133, 145, 154, 173, 190, 205, 226, 246, 262, 273, 277, 290, 298, 313, 326, 334, 370, 373, 385, 406, 421, 426, 442, 457, 473, 478, 493, 505, 514, 526, 537, 565, 573, 586, 601, 606, 622, 626, 658, 673, 694, 709, 730, 733, 745
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Crossrefs

Programs

  • Maple
    state:= [true,true,true,true]:
    R:= NULL: count:= 0:
    for n from 1 while count < 100 do
      state:= [state[2],state[3],state[4],numtheory:-issqrfree(n)];
      if state = [false,true,true,false] then
         R:= R, n-2; count:= count+1
      fi
    od:
    R; # Robert Israel, Mar 02 2022
  • Mathematica
    Transpose[SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,800}],{0,1,1,0}]][[1]]+1 (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2016 *)

A268332 Squarefree numbers differing by more than 3 from any other squarefree number.

Original entry on oeis.org

2526, 44405, 47527, 47973, 55779, 72474, 101037, 106327, 106674, 109023, 110107, 133577, 153173, 165574, 183553, 186247, 193026, 196747, 208847, 209674, 212127, 218527, 220209, 234622, 237522, 245149, 261478, 266853, 269953, 308649, 328877, 334522, 342066, 364151, 370785, 375823
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    SF:= select(numtheory:-issqrfree, [$1..10^6]):
    SF[select(i -> SF[i]-SF[i-1]>=4  and SF[i+1]-SF[i]>=4, [$2..nops(SF)-1])]; # Robert Israel, Feb 02 2016

A268334 Squarefree numbers differing by more than 5 from any other squarefree number.

Original entry on oeis.org

8061827, 60529549, 82490423, 213819827, 245990821, 360350923, 364661627, 465966527, 494501773, 531794155, 651012673, 661327077, 665519027, 693770521, 765921647, 800254429, 826112857, 836818573, 885970253, 914588627, 930996623, 936321349, 958710973, 992890427, 1069677149
Offset: 1

Views

Author

Keywords

Crossrefs

A268330 Least squarefree number differing by more than n from any other squarefree number.

Original entry on oeis.org

1, 17, 26, 2526, 5876126, 8061827, 8996188226, 2074150570370
Offset: 0

Views

Author

Keywords

Comments

1.8*10^12 < a(7) <= 10735237201449 - Robert Israel, Mar 18 2016
a(8) > 5*10^12. - Giovanni Resta, Apr 11 2016

Examples

			a(2) = 26 because 26 is squarefree but 24,25,27,28 are not.
		

Crossrefs

Programs

  • MATLAB
    B = 10^8; % blocks of size B
    nB = 1000; % nB blocks
    A = [1];
    P = primes(floor(sqrt(nB*B)));
    mmax = 1;
    i0 = 1;
    for k = 0:nB-1  % search squarefrees from i0+1 to i0 + B
      V = true(1, B);
      for i = 1:numel(P)
        p = P(i);
        V([(p^2 - mod(i0,p^2)):p^2:B]) = false;
      end
      SF = find(V) + i0;
      DSF = SF(2:end) - SF(1:end-1);
      i0 = SF(end-2);
      M = min(DSF(1:end-1), DSF(2:end));
      newmax = max(mmax,max(M));
      for i = mmax+1:newmax
        A(i) = SF(1 + find(M>=i, 1, 'first'));
      end
      mmax = newmax;
    end
    for i=1:mmax
      fprintf('%d ',A(i));
    end
    fprintf('\n');  % Robert Israel, Mar 16 2016
  • Mathematica
    (* implementation assumes a(n) is increasing *)
    nsfRun[n_]:=Module[{i=n}, While[!SquareFreeQ[i], i++]; i-n]
    a268330[{low_, high_}, width_]:=Module[{k=width, i, next, r, s, list={}}, For[i=low, i<=high, i+=next, r=nsfRun[i]; If[r0 (* Hartmut F. W. Hoft, Mar 15 2016 *)
    a268330[{0,10000000},1] (* computes a(1)...a(5) *)

Extensions

a(6) from Hartmut F. W. Hoft, Mar 15 2016
a(7) from Giovanni Resta, Apr 11 2016

A268331 Squarefree numbers differing by more than 2 from any other squarefree number.

Original entry on oeis.org

26, 170, 362, 530, 638, 727, 874, 926, 962, 1027, 1126, 1423, 1574, 1774, 1814, 1826, 1861, 2059, 2402, 2526, 2674, 2726, 2782, 2874, 3178, 3482, 3574, 3719, 3774, 3970, 4166, 4474, 4490, 4526, 4654, 5042, 5045, 5374, 5426, 5914, 5930, 6026, 6173, 6254, 6274, 6326, 6418, 6626, 6649, 6726, 7138, 7174
Offset: 1

Views

Author

Keywords

Examples

			26 is a term because 26 is squarefree but 24,25,27,28 are not.
		

Crossrefs

Programs

  • Mathematica
    SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,7200}],{0,0,1,0,0}][[All,1]]+2 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 19 2018 *)

A268333 Squarefree numbers differing by more than 4 from any other squarefree number.

Original entry on oeis.org

5876126, 8061827, 19375679, 27926071, 29002021, 29850943, 39224453, 39728861, 54427974, 56389147, 60529549, 63520174, 67806346, 71987374, 75239979, 82490423, 87011827, 91332377, 97447622, 99368949, 100842249, 107447838, 110196277, 118389143, 134817726, 149840974, 159140777, 161651279
Offset: 1

Views

Author

Keywords

Crossrefs

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 3, 0, 1, 3, 0, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 2, 0, 0, 3, 2, 0, 2, 3, 3, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

All terms are 0, 1, 2, or 3 (cf. A078147).
The inclusive version is a(n) + 2.
The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...

Examples

			The composite numbers counted by a(n) form the following set partition of A120944:
{6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
		

Crossrefs

For prime (instead of nonsquarefree) we have A046933.
For squarefree (instead of nonsquarefree) we have A076259(n)-1.
For prime power (instead of nonsquarefree) we have A093555.
For prime instead of composite we have A236575.
For nonprime prime power (instead of nonsquarefree) we have A378456.
For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
A002808 lists the composite numbers.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A073247 lists squarefree numbers with nonsquarefree neighbors.
A120944 lists squarefree composite numbers.
A377432 counts perfect-powers between primes, zeros A377436.
A378369 gives distance to the next nonsquarefree number (A120327).

Programs

  • Mathematica
    v=Select[Range[100],!SquareFreeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
Previous Showing 11-20 of 28 results. Next