cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A356844 Numbers k such that the k-th composition in standard order contains at least one 1. Numbers that are odd or whose binary expansion contains at least two adjacent 1's.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms, binary expansions, and standard compositions:
   1:       1  (1)
   3:      11  (1,1)
   5:     101  (2,1)
   6:     110  (1,2)
   7:     111  (1,1,1)
   9:    1001  (3,1)
  11:    1011  (2,1,1)
  12:    1100  (1,3)
  13:    1101  (1,2,1)
  14:    1110  (1,1,2)
  15:    1111  (1,1,1,1)
  17:   10001  (4,1)
  19:   10011  (3,1,1)
  21:   10101  (2,2,1)
  22:   10110  (2,1,2)
  23:   10111  (2,1,1,1)
  24:   11000  (1,4)
  25:   11001  (1,3,1)
  26:   11010  (1,2,2)
  27:   11011  (1,2,1,1)
  28:   11100  (1,1,3)
  29:   11101  (1,1,2,1)
  30:   11110  (1,1,1,2)
  31:   11111  (1,1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The case beginning with 1 is A004760, complement A004754.
The complement is A022340.
These compositions are counted by A099036, complement A212804.
The case covering an initial interval is A333217.
The gapless but non-initial version is A356843, unordered A356845.

Programs

  • Mathematica
    Select[Range[0,100],OddQ[#]||MatchQ[IntegerDigits[#,2],{_,1,1,_}]&]

Formula

Union of A005408 and A004780.

A356845 Odd numbers with gapless prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 45, 47, 49, 53, 59, 61, 67, 71, 73, 75, 77, 79, 81, 83, 89, 97, 101, 103, 105, 107, 109, 113, 121, 125, 127, 131, 135, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence is gapless if it covers an interval of positive integers.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Consists of the odd terms of A073491.
These partitions are counted by A264396.
The strict case is A294674, counted by A136107.
The version for compositions is A356843, counted by A251729.
A001221 counts distinct prime factors, sum A001414.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Select[Range[1,100,2],nogapQ[primeMS[#]]&]

A073487 Squarefree numbers having exactly one prime gap.

Original entry on oeis.org

10, 14, 21, 22, 26, 33, 34, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 111, 114, 115, 118, 119, 122, 123, 129, 133, 134, 138, 141, 142, 145, 146, 154, 155, 158, 159, 161, 165, 166, 174, 177, 178, 183, 185
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073484(a(n)) = 1.

Examples

			78 is a term, as 78 = 2*3*13 with one gap between 3 and 13.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Res:= NULL:
    for a from 1 to numtheory:-pi(isqrt(N)) do
      for b from a do
        p:= mul(ithprime(i),i=a..b);
        if p > N/ithprime(b+2) then break fi;
        for c from b+2 while p*ithprime(c) <= N do
          for d from c do
            q:= mul(ithprime(i),i=c..d);
            if p*q > N then break fi;
            Res:= Res, p*q;
          od
        od
      od
    od:
    sort([Res]); # Robert Israel, Apr 20 2017
  • Mathematica
    okQ[n_] := SquareFreeQ[n] && Length[SequencePosition[FactorInteger[n][[All, 1]], {p_?PrimeQ, q_?PrimeQ} /; q != NextPrime[p]]] == 1;
    Select[Range[200], okQ] (* Jean-François Alcover, Feb 28 2019 *)

A073494 Numbers having exactly two prime gaps in their factorization.

Original entry on oeis.org

110, 130, 170, 182, 190, 220, 230, 238, 260, 266, 273, 290, 310, 322, 340, 357, 364, 370, 374, 380, 399, 406, 410, 418, 430, 434, 440, 460, 470, 476, 483, 494, 506, 518, 520, 530, 532, 546, 550, 561, 574, 580, 590, 598, 602, 609, 610, 620, 627, 638, 644
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073490(a(n)) = 2.

Examples

			220 is a term, as 220 = 2*2*5*11 with two gaps: between 2 and 5 and between 5 and 11.
		

Crossrefs

Programs

  • Haskell
    a073494 n = a073494_list !! (n-1)
    a073494_list = filter ((== 2) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[645], Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] == 2 &] (* Jayanta Basu, Jul 01 2013 *)

A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 32, 36, 42, 64, 68, 72, 74, 82, 84, 128, 136, 146, 148, 164, 170, 256, 264, 272, 274, 276, 290, 292, 296, 298, 324, 328, 330, 338, 340, 512, 528, 548, 580, 584, 586, 594, 596, 658, 660, 676, 682, 1024, 1040, 1056, 1092, 1096, 1098
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   18: (3,2)
   20: (2,3)
   32: (6)
   36: (3,3)
   42: (2,2,2)
   64: (7)
   68: (4,3)
   72: (3,4)
   74: (3,2,2)
   82: (2,3,2)
   84: (2,2,3)
		

Crossrefs

See link for sequences related to standard compositions.
A subset of A022340.
These compositions are counted by A251729.
The unordered version (using Heinz numbers of partitions) is A356845.
A333217 ranks complete compositions.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356841 ranks gapless compositions, counted by A107428.
A356842 ranks non-gapless compositions, counted by A356846.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&]

Formula

Complement of A333217 in A356841.

A356842 Numbers k such that the k-th composition in standard order does not cover an interval of positive integers (not gapless).

Original entry on oeis.org

9, 12, 17, 19, 24, 25, 28, 33, 34, 35, 39, 40, 48, 49, 51, 56, 57, 60, 65, 66, 67, 69, 70, 71, 73, 76, 79, 80, 81, 88, 96, 97, 98, 99, 100, 103, 104, 112, 113, 115, 120, 121, 124, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   9: (3,1)
  12: (1,3)
  17: (4,1)
  19: (3,1,1)
  24: (1,4)
  25: (1,3,1)
  28: (1,1,3)
  33: (5,1)
  34: (4,2)
  35: (4,1,1)
  39: (3,1,1,1)
  40: (2,4)
  48: (1,5)
  49: (1,4,1)
  51: (1,3,1,1)
  56: (1,1,4)
  57: (1,1,3,1)
  60: (1,1,1,3)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073492, complement A073491.
These compositions are counted by the complement of A107428.
The complement is A356841.
The gapless but non-initial version is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!nogapQ[stc[#]]&]

A356604 Number of integer compositions of n into odd parts covering an initial interval of odd positive integers.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 5, 9, 13, 24, 40, 61, 101, 160, 257, 415, 679, 1103, 1774, 2884, 4656, 7517, 12165, 19653, 31753, 51390, 83134, 134412, 217505, 351814, 569081, 920769, 1489587, 2409992, 3899347, 6309059, 10208628, 16518910, 26729830, 43254212, 69994082
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (111)  (13)    (113)    (1113)    (133)      (1133)
                    (31)    (131)    (1131)    (313)      (1313)
                    (1111)  (311)    (1311)    (331)      (1331)
                            (11111)  (3111)    (11113)    (3113)
                                     (111111)  (11131)    (3131)
                                               (11311)    (3311)
                                               (13111)    (111113)
                                               (31111)    (111131)
                                               (1111111)  (111311)
                                                          (113111)
                                                          (131111)
                                                          (311111)
                                                          (11111111)
The a(9) = 24 compositions:
  (135)  (11133)  (1111113)  (111111111)
  (153)  (11313)  (1111131)
  (315)  (11331)  (1111311)
  (351)  (13113)  (1113111)
  (513)  (13131)  (1131111)
  (531)  (13311)  (1311111)
         (31113)  (3111111)
         (31131)
         (31311)
         (33111)
		

Crossrefs

The case of partitions is A053251, ranked by A356232 and A356603.
These compositions are ranked by the intersection of A060142 and A333217.
This is the odd initial case of A107428.
This is the odd restriction of A107429.
This is the normal/covering case of A324969 (essentially A000045).
The non-initial version is A356605.
A000041 counts partitions, compositions A011782.
A055932 lists numbers with prime indices covering an initial interval.
A066208 lists numbers with all odd prime indices, counted by A000009.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[(#+1)/2]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Sep 01 2022

A137722 Number of numbers not greater than n with exactly one prime gap in their factorization.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 17, 18, 18, 18, 19, 20, 21, 22, 22, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 29, 29, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 09 2008

Keywords

Comments

a(n) > a(n-1) iff A073490(n) = 1;
A137721(n) > a(n) for n < 134;
A137721(n) < a(n) for n > 140.

Crossrefs

Cf. A073493.

A162685 Positive integers that are not prime powers and are not divisible by any consecutive primes.

Original entry on oeis.org

10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 68, 69, 74, 76, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 104, 106, 110, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 133, 134, 136, 141, 142
Offset: 1

Views

Author

Leroy Quet, Jul 10 2009

Keywords

Examples

			220 is factored as 2^2 * 5 * 11. Since both 2 and 5 are not consecutive primes, and 5 and 11 are not consecutive primes (2 and 5 are separated by 3, and 5 and 11 are separated by 7), then 220 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA162685 := proc(n) local pfs,i; pfs := numtheory[factorset](n) ; if nops(pfs) <= 1 then RETURN(false) ; else pfs := sort(convert(pfs,list)) ; for i from 2 to nops(pfs) do if op(i,pfs) = nextprime(op(i-1,pfs)) then RETURN(false): fi; od: RETURN(true) ; fi; end: A162685 := proc(n) local a; if n = 1 then 10; else for a from procname(n-1)+1 do if isA162685(a) then RETURN(a) ; fi; od: fi; end: seq(A162685(n),n=1..100) ; # R. J. Mathar, Jul 13 2009
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, Length[f] > 1 && SequenceCount[f[[;; , 1]], {p1_, p2_} /; p2 == NextPrime[p1]] ==  0]; Select[Range[150], q] (* Amiram Eldar, Apr 10 2021 *)

Extensions

More terms from R. J. Mathar, Jul 13 2009

A356956 Numbers k such that the k-th composition in standard order is a gapless interval (in increasing order).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 16, 20, 32, 52, 64, 72, 128, 256, 272, 328, 512, 840, 1024, 1056, 2048, 2320, 4096, 4160, 8192, 10512, 16384, 16512, 17440, 26896, 32768, 65536, 65792, 131072, 135232, 148512, 262144, 262656, 524288, 672800, 1048576, 1049600, 1065088, 1721376
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding intervals begin:
        0: ()
        1: (1)
        2: (2)
        4: (3)
        6: (1,2)
        8: (4)
       16: (5)
       20: (2,3)
       32: (6)
       52: (1,2,3)
       64: (7)
       72: (3,4)
      128: (8)
      256: (9)
      272: (4,5)
      328: (2,3,4)
      512: (10)
      840: (1,2,3,4)
		

Crossrefs

See link for sequences related to standard compositions.
These compositions are counted by A001227.
An unordered version is A073485, non-strict A073491 (complement A073492).
The initial version is A164894, non-strict A356843 (unordered A356845).
The non-strict version is A356841, initial A333217, counted by A107428.
A066311 lists gapless numbers.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Select[Range[0,1000],chQ[stc[#]]&]
Previous Showing 11-20 of 20 results.