cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 99 results. Next

A081614 Subsequence of A005428 with state = 1.

Original entry on oeis.org

1, 4, 6, 9, 31, 70, 105, 355, 799, 1798, 2697, 9103, 20482, 30723, 69127, 155536, 233304, 349956, 524934, 787401, 2657479, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 153243637, 1745540806, 2618311209, 8836800331, 19882800745, 67104452515, 150985018159, 339716290858, 509574436287, 1146542481646, 1719813722469, 13059835455001, 44076944660629, 753095921662471, 1694465823740560
Offset: 0

Views

Author

N. J. A. Sloane, Apr 23 2003

Keywords

Comments

Values of n such that A054995(n) = 1. - Ryan Brooks, Jul 17 2020
From Petros Hadjicostas, Jul 20 2020: (Start)
From a(1) = 4 to a(28) = 153243637, the values appear in Table 18 (p. 374) in Schuh (1968) under the Survivor No. 1 column (in a variation of Josephus's counting off game where m people on a circle are labeled 1 through m and every third person drops out).
a(29) here is 1745540806 but 1595540806 in Schuh (1968). Burde (1987) agrees with Schuh (1968). See the table on p. 207 of the paper (with q = 0). Actually, 1595540806 is the last number on the table with q = 0.
It seems Schuh (1968) made a calculation error and Burde (1987) copied it. See my comment for A073941 for more details. (End)

References

  • Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374.]

Crossrefs

Programs

  • PARI
    /* In the program below, we use a truncated version of either A005428 or A073941 and choose those terms that correspond to "state" or "number of last survivor" equal to 1. See A073941 or Schuh (1968) for more details. */
    first(n) = {my(res = vector(n), t = 1, wn = wo = 4, go = gn = 1); res[1] = 1; for(i = 1, oo, c = wo % 2; if(go == 1, t++; res[t] = wo; if(t >= n, return(res) ) ); wn = floor(wo*3/2) + c * (2 - go); gn = 3 * c + go * (-1)^c; wo = wn; go = gn; ) } \\ David A. Corneth and Petros Hadjicostas, Jul 20 2020

Formula

a(n) = [(n+1)-th even number of A061419]/2. - John-Vincent Saddic, May 29 2021

Extensions

More terms from Hans Havermann, Apr 23 2003

A081615 Subsequence of A005428 where state = 2.

Original entry on oeis.org

1, 2, 3, 14, 21, 47, 158, 237, 533, 1199, 4046, 6069, 13655, 46085, 103691, 1181102, 1771653, 3986219, 102162425, 229865456, 344798184, 517197276, 775795914, 1163693871, 3927466814, 5891200221, 13255200497, 29824201118, 44736301677, 100656678773, 226477527239, 764361654431, 2579720583704, 3869580875556, 5804371313334, 8706556970001, 19589753182502, 29384629773753, 66115416990944, 99173125486416
Offset: 0

Views

Author

N. J. A. Sloane, Apr 23 2003

Keywords

Comments

Excluding the initial 1, the values of n such that A054995(n) = 2. - Ryan Brooks, Jul 17 2020
From Petros Hadjicostas, Jul 20 2020: (Start)
From a(1) = 2 to a(22) = 775795914, the values appear in Table 18 (p. 374) in Schuh (1968) under the Survivor No. 2 column (in a variation of Josephus's counting off game where m people on a circle are labeled 1 through m and every third person drops out).
a(23) here is 1163693871 but 1063693871 in Schuh (1968). Burde (1987) agrees with Schuh (1968). See the table on p. 207 of the paper (with q = 1).
It seems Schuh (1968) made a calculation error and Burde (1987) copied it. See my comment for A073941 for more details. (End)

References

  • Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374.]

Crossrefs

Programs

  • PARI
    /* In the program below, we use a truncated version of either A005428 or A073941 and choose those terms that correspond to "state" or "number of last survivor" equal to 2. See A073941 or Schuh (1968) for more details. */
    first(n) = {my(res = vector(n), t = 1, wn = wo = gn = go = 2); res[1] = 1; for(i = 1, oo, c = wo % 2; if(go == 2, t++; res[t] = wo; if(t >= n, return(res))); wn = floor(wo*3/2) + c * (2 - go); gn = 3 * c + go * (-1)^c; wo = wn; go = gn; )} \\ David A. Corneth and Petros Hadjicostas, Jul 21 2020

Extensions

More terms from Hans Havermann, Apr 23 2003

A082125 Smallest difference>1 between d and p/d for any divisor d of the partial product p of the sequence, starting with 4.

Original entry on oeis.org

4, 3, 4, 2, 4, 8, 16, 64, 512, 16384, 2097152, 2147483648, 140737488355328, 1180591620717411303424, 40564819207303340847894502572032, 365375409332725729550921208179070754913983135744
Offset: 0

Views

Author

Ralf Stephan, Apr 04 2003

Keywords

Comments

a(n) is a power of two for n>1 and log_2(a(n))=A073941(n) for n>2. - Ralf Stephan, Apr 16 2003

Crossrefs

Cf. A082120, A003681 (starts with 2, 3), A082126.
Cf. A029744.

Programs

  • PARI
    p=4; print1(p, ", "); for(n=1, 50, v=divisors(p); r=sqrt(p); t=0; for(k=1, matsize(v)[2], if(v[k]>=r, t=k; break)); if(v[t]^2==p, u=t, u=t-1); if(v[t]-v[u]<2, u=u-1; t=t+1); print1(v[t]-v[u]", "); p=p*(v[t]-v[u]))

A120169 a(n) = 12 + floor((1 + Sum_{j=1..n-1} a(j))/4).

Original entry on oeis.org

12, 15, 19, 23, 29, 36, 45, 57, 71, 89, 111, 139, 173, 217, 271, 339, 423, 529, 661, 827, 1033, 1292, 1615, 2018, 2523, 3154, 3942, 4928, 6160, 7700, 9625, 12031, 15039, 18798, 23498, 29372, 36715, 45894, 57368, 71710
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Magma
    function f(n, a, b)
      t:=0;
        for k in [1..n-1] do
          t+:= a+Floor((b+t)/4);
        end for;
      return t;
    end function;
    g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
    A120169:= func< n | g(n, 12, 1) >;
    [A120169(n): n in [1..60]]; // G. C. Greubel, Sep 09 2023
    
  • Mathematica
    nxt[{t_,a_}]:=Module[{c=Floor[(t+49)/4]},{t+c,c}]; NestList[nxt,{12,12},40][[All,2]] (* Harvey P. Dale, Jun 21 2017 *)
  • SageMath
    @CachedFunction
    def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//4
    def A120169(n): return f(n, 12, 1)
    [A120169(n) for n in range(1, 61)] # G. C. Greubel, Sep 09 2023

A304273 The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).

Original entry on oeis.org

2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence exists since the smallest even integers (see A303500) are prefixes of each other.
Apparently a variant of A205083. - R. J. Mathar, Jun 09 2018

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 2*n,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n)-3/2*b(n-1):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)

Formula

For n>1, a(n) = A304274(n-1) - 1.

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A120135 a(n) = 5 + floor((1 + Sum_{j=1..n-1} a(j)) / 2).

Original entry on oeis.org

5, 8, 12, 18, 27, 40, 60, 90, 135, 203, 304, 456, 684, 1026, 1539, 2309, 3463, 5195, 7792, 11688, 17532, 26298, 39447, 59171, 88756, 133134, 199701, 299552, 449328, 673992, 1010988, 1516482, 2274723, 3412084, 5118126, 7677189, 11515784
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 5 +Floor[(1+Sum[a[k], {k,n-1}])/2];
    Table[a[n], {n,60}] (* G. C. Greubel, May 07 2023 *)
  • SageMath
    @CachedFunction
    def A120135(n): return 5 + (1 + sum(A120135(k) for k in range(1,n)))//2
    [A120135(n) for n in range(1,61)] # G. C. Greubel, May 07 2023

Formula

a(n) ~ c * (3/2)^n, where c = 3.514931952760438754899508881646642282344325354834703833076259269449577... - Vaclav Kotesovec, May 07 2023

A120136 a(n) = 7 + floor(Sum_{j=1..n-1} a(j) / 2).

Original entry on oeis.org

7, 10, 15, 23, 34, 51, 77, 115, 173, 259, 389, 583, 875, 1312, 1968, 2952, 4428, 6642, 9963, 14945, 22417, 33626, 50439, 75658, 113487, 170231, 255346, 383019, 574529, 861793, 1292690, 1939035, 2908552, 4362828, 6544242, 9816363, 14724545
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{t_,a_}] := Module[{c=7+Floor[t/2]},{t+c,c}];
    NestList[nxt,{7,7},40][[All,2]] (* Harvey P. Dale, Jan 13 2017 *)
  • SageMath
    @CachedFunction
    def A120136(n): return 7 +sum(A120136(k) for k in range(1,n))//2
    [A120136(n) for n in range(1,60)] # G. C. Greubel, May 08 2023

A120137 a(n) = 8 + floor( (1 + Sum_{j=1..n-1} a(j)) / 2).

Original entry on oeis.org

8, 12, 18, 27, 41, 61, 92, 138, 207, 310, 465, 698, 1047, 1570, 2355, 3533, 5299, 7949, 11923, 17885, 26827, 40241, 60361, 90542, 135813, 203719, 305579, 458368, 687552, 1031328, 1546992, 2320488, 3480732, 5221098, 7831647, 11747471, 17621206
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 8 +Floor[(1 +Sum[a[k], {k,n-1}])/2];
    Table[a[n], {n,60}] (* G. C. Greubel, May 08 2023 *)
    nxt[{t_,a_}]:=Module[{c=8+Floor[(1+t)/2]},{t+c,c}]; NestList[nxt,{8,8},40][[;;,2]] (* Harvey P. Dale, Sep 10 2023 *)
  • SageMath
    @CachedFunction
    def A120137(n): return 8 +(1 +sum(A120137(k) for k in range(1,n)))//2
    [A120137(n) for n in range(1,60)] # G. C. Greubel, May 08 2023

A120138 a(n) = 10 + floor(Sum_{j=1..n-1} a(j) / 2).

Original entry on oeis.org

10, 15, 22, 33, 50, 75, 112, 168, 252, 378, 567, 851, 1276, 1914, 2871, 4307, 6460, 9690, 14535, 21803, 32704, 49056, 73584, 110376, 165564, 248346, 372519, 558779, 838168, 1257252, 1885878, 2828817, 4243226, 6364839, 9547258, 14320887
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 10 +Quotient[Sum[a[k], {k,n-1}],2];
    Table[a[n], {n,60}] (* G. C. Greubel, May 08 2023 *)
  • SageMath
    @CachedFunction
    def A120138(n): return 10 +sum(A120138(k) for k in range(1,n))//2
    [A120138(n) for n in range(1,60)] # G. C. Greubel, May 08 2023

A120139 a(n) = 11 + floor( (1 + Sum_{j=1..n-1} a(j)) / 2).

Original entry on oeis.org

11, 17, 25, 38, 57, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 3280, 4920, 7380, 11070, 16605, 24908, 37362, 56043, 84064, 126096, 189144, 283716, 425574, 638361, 957542, 1436313, 2154469, 3231704, 4847556, 7271334, 10907001, 16360501
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 11 +Quotient[1 + Sum[a[k], {k,n-1}], 2];
    Table[a[n], {n,60}] (* G. C. Greubel, May 08 2023 *)
  • SageMath
    @CachedFunction
    def A120139(n): return 11 +(1 +sum(A120139(k) for k in range(1,n)))//2
    [A120139(n) for n in range(1,60)]  # G. C. Greubel, May 08 2023
Previous Showing 21-30 of 99 results. Next