cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A120978 2n+5^n-3^n.

Original entry on oeis.org

0, 4, 20, 104, 552, 2892, 14908, 75952, 384080, 1933460, 9706596, 48651000, 243609208, 1219108828, 6098732684, 30503229248, 152544843936, 762810312996, 3814309845172, 19072324066696, 95363944856264, 476826697849964
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 n + 5^n - 3^n, {n, 0, 30}] (* or *) LinearRecurrence[{10, -32, 38, -15},{0, 4, 20, 104}, 30] (* Harvey P. Dale, Jun 15 2011 *)
    CoefficientList[Series[2 x (2 - 10 x + 16 x^2)/((1 - x)^2(1 - 5 x)(1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 23 2013 *)

Formula

a(0)=0, a(1)=4, a(2)=20, a(3)=104, a(n) = 10*a(n-1)-32*a(n-2)+38*a(n-3)-15*a(n-4) [Harvey P. Dale, Jun 15 2011]
G.f.: 2*x*(2-10*x+16*x^2)/((1-x)^2*(1-5*x)*(1-3*x)). - Vincenzo Librandi, Feb 23 2013

Extensions

Edited by Ray Chandler, Sep 06 2006

A120990 5^n-3^n-2n.

Original entry on oeis.org

0, 0, 12, 92, 536, 2872, 14884, 75924, 384048, 1933424, 9706556, 48650956, 243609160, 1219108776, 6098732628, 30503229188, 152544843872, 762810312928, 3814309845100, 19072324066620, 95363944856184, 476826697849880
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4 x^2 (3 - 7 x)/((1 - x)^2 (1 - 5 x)(1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 23 2013 *)

Formula

G.f.: 4*x^2*(3-7*x)/((1-x)^2*(1-5*x)*(1-3*x)) . - Vincenzo Librandi, Feb 23 2013

A346992 Numbers occurring as divisors of 3^k + 5^k.

Original entry on oeis.org

1, 2, 4, 8, 13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 46, 47, 53, 58, 62, 73, 74, 76, 79, 82, 83, 89, 92, 94, 97, 101, 106, 107, 113, 124, 137, 139, 146, 149, 151, 152, 157, 158, 166, 167, 169, 178, 184, 188, 193, 194, 199, 202, 211, 212, 214, 221, 226, 227
Offset: 1

Views

Author

Hugo Pfoertner, Aug 11 2021

Keywords

Comments

If n is a term, then so are all divisors of n. - Robert Israel, Dec 08 2022

Crossrefs

Programs

  • Maple
    filter:= proc(n) local v;
       if igcd(n,15) <> 1 then return false fi;
       q:= 5/3 mod n;
       traperror(NumberTheory:-ModularLog(-1,q,n)) <> lasterror
    end proc:
    filter(1):= true:
    select(filter, [$1..300]); # Robert Israel, Dec 08 2022

A045585 Numbers k that divide 5^k + 3^k.

Original entry on oeis.org

1, 2, 34, 578, 4658, 9826, 79186, 167042, 638146, 1346162, 2839714, 5109826, 10848482, 22884754, 48275138, 86867042, 87426002, 184424194, 389040818, 459469778, 700046162, 820677346, 1476739714, 1486242034, 3135211298, 5605479122, 6613693906, 7810986226, 11900784754, 11977362274
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074606.

Programs

  • Mathematica
    Select[Range[10^6], Divisible[PowerMod[3, #, #] + PowerMod[5, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)

Extensions

a(26)-a(30) from Amiram Eldar, Oct 23 2021

A268511 Odd integers n such that 3^n + 5^n = x^2 + y^2 (x and y integers) is solvable.

Original entry on oeis.org

1, 5, 13, 17, 29, 89, 109, 149, 157, 193, 373
Offset: 1

Views

Author

Altug Alkan, Feb 06 2016

Keywords

Comments

Corresponding 3^n + 5^n values are 8, 3368, 1222297448, 763068593288, 186264583553473068008, ...
445 <= a(12) <= 509. 509, 661, 709 are terms. - Chai Wah Wu, Jul 22 2020

Examples

			1 is a term because 3^1 + 5^1 = 8 = 2^2 + 2^2.
5 is a term because 3^5 + 5^5 = 3368 = 2^2 + 58^2.
13 is a term because 3^13 + 5^13 = 1222297448 = 4118^2 + 34718^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 110, 2], Resolve@ Exists[{x, y}, Reduce[3^# + 5^# == (x^2 + y^2), {x, y}, Integers]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    is(n) = #bnfisintnorm(bnfinit(z^2+1), n);
    for(n=1, 1e3, if(n%2==1 && is(3^n + 5^n), print1(n, ", ")));
    
  • Python
    from sympy import factorint
    A268511_list = []
    for n in range(1,50,2):
        m = factorint(3**n+5**n)
        for d in m:
            if d % 4 == 3 and m[d] % 2:
                break
        else:
            A268511_list.append(n) # Chai Wah Wu, Dec 26 2018

Extensions

a(8)-a(9) from Giovanni Resta, Apr 10 2016
a(10)-a(11) from Chai Wah Wu, Jul 22 2020
Previous Showing 11-15 of 15 results.