cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A075414 Squares of A002279: a(n) = (5*(10^n - 1)/9)^2.

Original entry on oeis.org

0, 25, 3025, 308025, 30858025, 3086358025, 308641358025, 30864191358025, 3086419691358025, 308641974691358025, 30864197524691358025, 3086419753024691358025, 308641975308024691358025, 30864197530858024691358025, 3086419753086358024691358025, 308641975308641358024691358025
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 55^2 = 3025.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(25*x*(1 + 10*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20))) \\ Colin Barker, Jul 17 2019

Formula

a(n) = A002279(n)^2 = (5*A002275(n))^2 = 25*A002275(n)^2.
From Colin Barker, Jul 17 2019: (Start)
G.f.: 25*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
a(n) = 25*(10^n-1)^2/81. (End)
From Elmo R. Oliveira, Jul 29 2025: (Start)
E.g.f.: 25*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/81.
a(n) = 25*A002477(n). (End)

A075416 Squares of A002281.

Original entry on oeis.org

0, 49, 5929, 603729, 60481729, 6049261729, 604937061729, 60493815061729, 6049382595061729, 604938270395061729, 60493827148395061729, 6049382715928395061729, 604938271603728395061729, 60493827160481728395061729, 6049382716049261728395061729, 604938271604937061728395061729
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 77^2 = 5929.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(49*x*(1 + 10*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20))) \\ Colin Barker, Jul 17 2019

Formula

a(n) = A002281(n)^2 = (7*A002275(n))^2 = 49*A002275(n)^2.
From Colin Barker, Jul 17 2019: (Start)
G.f.: 49*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
a(n) = 49*(10^n-1)^2/81. (End)
From Elmo R. Oliveira, Jul 29 2025: (Start)
E.g.f.: 49*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/81.
a(n) = 49*A002477(n). (End)

A075417 Squares of A002282: a(n) = (8*(10^n - 1)/9)^2.

Original entry on oeis.org

0, 64, 7744, 788544, 78996544, 7901076544, 790121876544, 79012329876544, 7901234409876544, 790123455209876544, 79012345663209876544, 7901234567743209876544, 790123456788543209876544, 79012345678996543209876544, 7901234567901076543209876544, 790123456790121876543209876544
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 88^2 = 7744.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(64*x*(1 + 10*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20))) \\ Colin Barker, Jul 17 2019

Formula

a(n) = A002282(n)^2 = (8*A002275(n))^2 = 64*A002275(n)^2.
From Colin Barker, Jul 17 2019: (Start)
G.f.: 64*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
a(n) = 64*(10^n-1)^2/81. (End)
From Elmo R. Oliveira, Jul 30 2025: (Start)
E.g.f.: 64*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/81.
a(n) = 64*A002477(n). (End)

A177769 a(n) = 111*n.

Original entry on oeis.org

111, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2331, 2442, 2553, 2664, 2775, 2886, 2997, 3108, 3219, 3330, 3441, 3552, 3663, 3774, 3885, 3996, 4107, 4218, 4329, 4440, 4551, 4662, 4773, 4884, 4995, 5106
Offset: 1

Views

Author

Paul Curtz, May 13 2010

Keywords

Comments

The reference contains also sequences A102807, A109344, A075415, and A109492.

Crossrefs

Programs

Formula

G.f.: 111*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2).
a(n) = a(n-1) + 111.
E.g.f.: 111*x*exp(x). - Stefano Spezia, Sep 15 2023

A271528 a(n) = 2*(10^n - 1)^2/27.

Original entry on oeis.org

0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

All terms are multiple of 6.
Converges in a 10-adic sense to ...925925925926.
A transformation of the Wonderful Demlo numbers (A002477).
More generally, the ordinary generating function for the transformation of the Wonderful Demlo numbers, is k*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).

Examples

			n=1:                  6 = 2 * 3;
n=2:                726 = 22 * 33;
n=3:              73926 = 222 * 333;
n=4:            7405926 = 2222 * 3333;
n=5:          740725926 = 22222 * 33333;
n=6:        74073925926 = 222222 * 333333;
n=7:      7407405925926 = 2222222 * 3333333;
n=8:    740740725925926 = 22222222 * 33333333;
n=9:  74074073925925926 = 222222222 * 333333333, etc.
		

Crossrefs

Cf. similar sequences of the form k*((10^n - 1)/9)^2: A075411 (k=4), this sequence (k=6), A075412 (k=9), A075413 (k=16), A178630 (k=18), A075414 (k=25), A178631 (k=27), A075415 (k=36), A178632 (k=45), A075416 (k=49), A178633 (k=54), A178634 (k=63), A075417 (k=64), A178635 (k=72), A059988 (k=81).

Programs

  • Mathematica
    Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
    LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
  • PARI
    x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
    
  • Python
    for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
    # Soumil Mandal, Apr 10 2016

Formula

O.g.f.: 6*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
E.g.f.: 2 (exp(x) - 2*exp(10*x) + exp(100*x))/27.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 6*A002477(n) = 6*A002275(n)^2 = A002276(n)*A002277(n) = sqrt(A075411(n)*A075412(n)).
Sum_{n>=1} 1/a(n) = 0.1680577405662077350849154881928636039793563...
Lim_{n -> infinity} a(n + 1)/a(n) = 100.

A102832 Number of n-digit squares which contain the string "666" but not "6666".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 21, 78, 302, 1139, 4156, 14791, 52529, 183565, 635691, 2183533, 7314869, 25303217
Offset: 1

Views

Author

James R. Buddenhagen, Feb 27 2005

Keywords

Crossrefs

Programs

Extensions

a(13)-a(19) from Robert G. Wilson v, Mar 03 2005
Previous Showing 21-26 of 26 results.