A075415
Squares of A002280 or numbers (666...6)^2.
Original entry on oeis.org
0, 36, 4356, 443556, 44435556, 4444355556, 444443555556, 44444435555556, 4444444355555556, 444444443555555556, 44444444435555555556, 4444444444355555555556, 444444444443555555555556, 44444444444435555555555556, 4444444444444355555555555556, 444444444444443555555555555556
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
a(2) = 66^2 = 4356.
From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 36 = 9 * 4;
n=2: ................... 4356 = 99 * 44;
n=3: ................. 443556 = 999 * 444;
n=4: ............... 44435556 = 9999 * 4444;
n=5: ............. 4444355556 = 99999 * 44444;
n=6: ........... 444443555556 = 999999 * 444444;
n=7: ......... 44444435555556 = 9999999 * 4444444;
n=8: ....... 4444444355555556 = 99999999 * 44444444;
n=9: ..... 444444443555555556 = 999999999 * 444444444. (End)
-
Table[FromDigits[PadRight[{},n,6]]^2,{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,36,4356},20] (* Harvey P. Dale, May 20 2021 *)
Edited by
Alois P. Heinz, Aug 21 2019 (merged with
A102794, submitted by Richard C. Schroeppel, Feb 26 2005)
A059988
a(n) = (10^n - 1)^2.
Original entry on oeis.org
0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
Offset: 0
From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 81 = 9^2;
n=2: ................... 9801 = 99^2;
n=3: ................. 998001 = 999^2;
n=4: ............... 99980001 = 9999^2;
n=5: ............. 9999800001 = 99999^2;
n=6: ........... 999998000001 = 999999^2;
n=7: ......... 99999980000001 = 9999999^2;
n=8: ....... 9999999800000001 = 99999999^2;
n=9: ..... 999999998000000001 = 999999999^2. (End)
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 34.
Cf.
A075411,
A075412,
A075413,
A075414,
A075415,
A075416,
A075417,
A178630,
A178631,
A178632,
A178633,
A178634,
A178635,
A272066,
A272067,
A272068.
Original entry on oeis.org
0, 9, 1089, 110889, 11108889, 1111088889, 111110888889, 11111108888889, 1111111088888889, 111111110888888889, 11111111108888888889, 1111111111088888888889, 111111111110888888888889, 11111111111108888888888889, 1111111111111088888888888889, 111111111111110888888888888889
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
a(2) = 33^2 = 1089.
Contribution from _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ...................... 9 = 9 * 1;
n=2: ................... 1089 = 99 * 11;
n=3: ................. 110889 = 999 * 111;
n=4: ............... 11108889 = 9999 * 1111;
n=5: ............. 1111088889 = 99999 * 11111;
n=6: ........... 111110888889 = 999999 * 111111;
n=7: ......... 11111108888889 = 9999999 * 1111111;
n=8: ....... 1111111088888889 = 99999999 * 11111111;
n=9: ..... 111111110888888889 = 999999999 * 111111111. (End)
Cf.
A075411,
A075412,
A075413,
A075414,
A075415,
A075416,
A075417,
A002283,
A178630,
A178631,
A178632,
A178633,
A178634,
A178635.
-
LinearRecurrence[{11, -10}, {0, 3}, 20]^2 (* Vincenzo Librandi, Mar 20 2014 *)
Table[FromDigits[PadRight[{},n,9]]FromDigits[PadRight[{},n,1]],{n,0,15}] (* Harvey P. Dale, Feb 12 2023 *)
Original entry on oeis.org
0, 4, 484, 49284, 4937284, 493817284, 49382617284, 4938270617284, 493827150617284, 49382715950617284, 4938271603950617284, 493827160483950617284, 49382716049283950617284, 4938271604937283950617284, 493827160493817283950617284, 49382716049382617283950617284
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
-
I:=[0,4,484]; [n le 3 select I[n] else 111*Self(n-1)-1110*Self(n-2)+1000*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 25 2017
-
LinearRecurrence[{111, -1110, 1000}, {0, 4, 484}, 30] (* Vincenzo Librandi, Apr 25 2017 *)
Original entry on oeis.org
0, 16, 1936, 197136, 19749136, 1975269136, 197530469136, 19753082469136, 1975308602469136, 197530863802469136, 19753086415802469136, 1975308641935802469136, 197530864197135802469136, 19753086419749135802469136, 1975308641975269135802469136, 197530864197530469135802469136
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A075414
Squares of A002279: a(n) = (5*(10^n - 1)/9)^2.
Original entry on oeis.org
0, 25, 3025, 308025, 30858025, 3086358025, 308641358025, 30864191358025, 3086419691358025, 308641974691358025, 30864197524691358025, 3086419753024691358025, 308641975308024691358025, 30864197530858024691358025, 3086419753086358024691358025, 308641975308641358024691358025
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
Original entry on oeis.org
0, 49, 5929, 603729, 60481729, 6049261729, 604937061729, 60493815061729, 6049382595061729, 604938270395061729, 60493827148395061729, 6049382715928395061729, 604938271603728395061729, 60493827160481728395061729, 6049382716049261728395061729, 604938271604937061728395061729
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A271528
a(n) = 2*(10^n - 1)^2/27.
Original entry on oeis.org
0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0
n=1: 6 = 2 * 3;
n=2: 726 = 22 * 33;
n=3: 73926 = 222 * 333;
n=4: 7405926 = 2222 * 3333;
n=5: 740725926 = 22222 * 33333;
n=6: 74073925926 = 222222 * 333333;
n=7: 7407405925926 = 2222222 * 3333333;
n=8: 740740725925926 = 22222222 * 33333333;
n=9: 74074073925925926 = 222222222 * 333333333, etc.
Cf. similar sequences of the form k*((10^n - 1)/9)^2:
A075411 (k=4), this sequence (k=6),
A075412 (k=9),
A075413 (k=16),
A178630 (k=18),
A075414 (k=25),
A178631 (k=27),
A075415 (k=36),
A178632 (k=45),
A075416 (k=49),
A178633 (k=54),
A178634 (k=63),
A075417 (k=64),
A178635 (k=72),
A059988 (k=81).
-
Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
-
x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
-
for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
# Soumil Mandal, Apr 10 2016
Showing 1-8 of 8 results.
Comments