cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A081400 a(n) = d(n) - bigomega(n) - A005361(n).

Original entry on oeis.org

0, 0, 0, -1, 0, 1, 0, -2, -1, 1, 0, 1, 0, 1, 1, -3, 0, 1, 0, 1, 1, 1, 0, 1, -1, 1, -2, 1, 0, 4, 0, -4, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 0, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 6, 0, 1, 1, -5, 1, 4, 0, 1, 1, 4, 0, 1, 0, 1, 1, 1, 1, 4, 0, 1, -3, 1, 0, 6, 1, 1, 1, 1, 0, 6, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 4, 1, 0, 1, 0, 4, 1, 1, 0, 4, 1, 1, 1, 1, 1, 8, -1, 1
Offset: 1

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Examples

			Negative for true prime powers; zero for 1 and primes; see also A030231, A007304, A034683, A075819 etc. to judge about positivity or magnitude.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=factor(n)); numdiv(n) - bigomega(n) - prod(k=1, #f~, f[k,2]); \\ Michel Marcus, May 25 2017
    
  • Python
    from sympy import primefactors, factorint, divisor_count
    from operator import mul
    def bigomega(n): return 0 if n==1 else bigomega(n/primefactors(n)[0]) + 1
    def a005361(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [f[i] for i in f])
    def a(n): return divisor_count(n) - bigomega(n) - a005361(n) # Indranil Ghosh, May 25 2017

Formula

a(n) = A000005(n) - A001222(n) - A005361(n).

A291446 Squarefree triprimes of the form p*q*r such that p + q + r + 1 is prime.

Original entry on oeis.org

30, 42, 66, 78, 102, 110, 138, 182, 186, 222, 230, 246, 266, 282, 290, 318, 366, 374, 402, 434, 438, 498, 506, 518, 530, 582, 590, 602, 606, 618, 638, 642, 710, 782, 786, 806, 854, 890, 906, 942, 962, 1002, 1010, 1022, 1034, 1038, 1106, 1118, 1146, 1158, 1166, 1178, 1298
Offset: 1

Views

Author

Vincenzo Librandi, Aug 24 2017

Keywords

Comments

All terms are even. - Muniru A Asiru, Aug 29 2017

Examples

			42 = 2*3*7 and 2 + 3 + 7 + 1 is prime, so 42 is a term.
402 = 2*3*67 and 2 + 3 + 67 + 1 is prime, so 402 is a term.
		

Crossrefs

Subsequence of A075819, and hence of A007304.
Cf. A291319.

Programs

  • GAP
    A291446:=List(Filtered(Filtered(List(Filtered(List([1..10^6],Factors),i->Length(i)=3),Set),j->Length(j)=3),i->IsPrime(Sum(i)+1)),Product); # Muniru A Asiru, Aug 29 2017
    
  • Mathematica
    With[{nnn=80}, Take[Times@@@Select[Subsets[Prime[Range[nnn]], {3}], PrimeQ[Total[#] + 1] &]//Union, nnn]]
  • PARI
    list(lim)=my(v=List()); forprime(p=5, lim\6, forprime(q=3, min(lim\(2*p),p-2), if(isprime(p+q+3), listput(v, 2*p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 29 2017

A296117 Base-2 pseudoprimes of the form 2*p*q where p and q are primes.

Original entry on oeis.org

161038, 49699666, 760569694, 4338249646, 357647681422, 547551530002, 3299605275646, 22999986587854, 42820164121582, 55173914702146, 69345154539266, 353190859033982
Offset: 1

Views

Author

Max Alekseyev, Dec 05 2017

Keywords

Comments

a(5) and a(10) are found by McDaniel (1989).
Terms in this sequence are of the form 2pq where p and q are distinct odd primes (A075819). - Charles R Greathouse IV, Dec 05 2017

Crossrefs

Subsequence of A006935 and hence of A015919.
The even terms of A215672.
Intersection of A006935 and A215672. - Felix Fröhlich, Dec 05 2017

Programs

  • PARI
    list(lim)=my(v=List(),pq); forprime(p=3,lim\6, forprime(q=3,min(lim\(2*p),p), pq=p*q; if(Mod(4,pq)^pq==2, listput(v,2*pq)))); Set(v) \\ Charles R Greathouse IV, Dec 05 2017

A375908 Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes).

Original entry on oeis.org

18446, 39766, 74306, 83434, 94106, 100346, 107966, 111154, 111814, 113366, 140834, 144754, 145606, 146014, 147406, 149854, 154946, 155702, 156146, 165346, 171786, 189034, 190618, 191806, 197354, 201686, 203314, 206194, 211394, 211946, 219386, 231286, 234394, 253114, 258266, 262294, 263966
Offset: 1

Views

Author

Massimo Kofler, Sep 02 2024

Keywords

Comments

Terms are of the form 4*k+2.

Examples

			18446 = 2 * 23 * 401  (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43).
39766 = 2 * 59 * 337  (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23).
74306 = 2 * 53 * 701  (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47).
		

Crossrefs

Cf. A007304, A046386. Subsequence of A075819.

Programs

  • Maple
    N:= 5*10^5: # for terms <= N
    P:= select(isprime,[seq(i,i=3..N/3,2)]): nP:= nops(P):
    R:= NULL:
    for i from 1 to nP while 2*P[i]*P[i+1] <= N do
      for j from i+1 to nP do
        x:= 2*P[i]*P[j];
        if x > N then break fi;
        if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and
          numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then
            R:= R,x
        fi
    od od:
    sort([R]); # Robert Israel, Sep 02 2024
  • Mathematica
    e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Sep 02 2024 *)
Previous Showing 11-14 of 14 results.