cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A363432 Number of 231-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 54, 170, 551, 1817, 6092, 20722, 71325, 248055, 870402, 3077861, 10959008, 39261382, 141430953, 512002865, 1861872379, 6798330676, 24915934639, 91630864177, 338048560865, 1250793108398, 4640542045919, 17260221009367, 64349394615738, 240434325753052
Offset: 0

Views

Author

Juan B. Gil, Jun 22 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].
a(n) is also the number of 312-avoiding SIF permutations of size n.

Examples

			For n=5 the a(5)=6 permutations are 51234, 51423, 53124, 54123, 54132, 54213.
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1 + x/(1 + CatalanNumber[1]*x^2*(x + 1) + ContinuedFractionK[-x, 1 + CatalanNumber[k]*x^(k + 1)*(x + 1), {k, 2, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2023 *)

Formula

G.f.: 1 + x/(1+C(1)*x^2*(x+1)-x/(1+C(2)*x^3*(x+1)-x/(1+C(3)*x^4*(x+1)-x/(...)))), where C(k)=binomial(2*k,k)/(k+1).

A363433 Number of (123,231)-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 5, 5, 7, 7, 10, 9, 13, 12, 16, 15, 20, 18, 24, 22, 28, 26, 33, 30, 38, 35, 43, 40, 49, 45, 55, 51, 61, 57, 68, 63, 75, 70, 82, 77, 90, 84, 98, 92, 106, 100, 115, 108, 124, 117, 133, 126, 143, 135, 153, 145, 163, 155, 174, 165, 185, 176, 196
Offset: 0

Views

Author

Juan B. Gil, Jun 30 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].

Examples

			For n from 1 to 5 the six permutations (1+1+1+1+2) are 1, 21, 312, 4312, 54132, 54213.
		

Crossrefs

Programs

  • Maple
    A131713 := proc(n)
        op(1+modp(n,3),[1,-2,1]) ;
    end proc:
    A363433 := proc(n)
        if n < 3 then
            1;
        else
            16*A131713(n) +42*n-79+6*n^2-81*(-1)^n+18*n*(-1)^n;
            %/144 ;
        end if;
    end proc:
    seq(A363433(n),n=0..20) ; # R. J. Mathar, Jul 17 2023
  • Mathematica
    LinearRecurrence[{0,2,1,-1,-2,0,1},{1,1,1,1,1,2,3,3,5,5},100] (* Paolo Xausa, Nov 18 2023 *)
  • PARI
    Vec((x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3) + O(x^65)) \\ Michel Marcus, Jul 01 2023

Formula

G.f.: (x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3).
E.g.f.: (144 + 36*x*(2 + x) + (3*x^2 + 15*x - 80)*cosh(x) + 8*exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + (3*x^2 + 33*x + 1)*sinh(x))/72. - Stefano Spezia, Jul 01 2023
144*a(n) = 16*A131713(n) +42*n -79 +6*n^2 -81*(-1)^n +18*n*(-1)^n , for n>=3. - R. J. Mathar, Jul 17 2023

A385287 a(0) = 1, a(1) = 0; a(n) = a(n-2) + Sum_{k=0..n-1} k * a(k) * a(n-1-k).

Original entry on oeis.org

1, 0, 1, 2, 7, 32, 177, 1148, 8535, 71552, 668037, 6877742, 77448741, 947342072, 12512378625, 177525399952, 2693306735145, 43516930747192, 746123462304725, 13531269497675506, 258807528403312427, 5206929233591435496, 109929366336996502793, 2430108139669253103756
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=2, n, v[i+1]=v[i-1]+sum(j=0, i-1, j*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x^2 - x^2 * (d/dx A(x)) ).

A386467 a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-1} k * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 11, 56, 353, 2619, 22175, 210077, 2196732, 25104008, 311139385, 4156661566, 59551385285, 910955221547, 14821776943015, 255639834413712, 4659720389150655, 89515541970546889, 1807824383345511646, 38294715773270374886, 849051935815301595992, 19665430140710069083996
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i<=2, 1, 0))); for(i=2, n, v[i+1]=v[i]+v[i-1]+sum(j=0, i-1, j*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x^2 - x^2 * (d/dx A(x)) ).

A091139 Row sums of triangle A091063.

Original entry on oeis.org

1, 1, 2, 5, 16, 66, 346, 2229, 17000, 148898, 1465364, 15957314, 190158712, 2459041744, 34278016954, 512253587397, 8168812190472, 138450960309882
Offset: 0

Views

Author

Paul D. Hanna, Dec 21 2003

Keywords

Comments

The initial terms of the binomial transform of the n-th row of triangle A091063 forms the n-th row of triangle A059438 transposed (permutations of [1..n] with k components); the row sums of A059438 equal the factorials.

Crossrefs

Cf. A091063.

Formula

G.f.: A(x) = 1/(1-x*g(x)) where g(x) is the g.f. of A075834 shift 1 place left.

A134988 Number of formal expressions obtained by applying iterated binary brackets to n indexed symbols x_1, ..., x_n such that: 1) each symbol appears exactly once; 2) the smallest index inside a bracket appears on the left hand side and the largest index appears on the right hand side; 3) the outer bracket is the only bracket whose set of indices is a sequence of consecutive integers.

Original entry on oeis.org

1, 0, 1, 4, 22, 144, 1089, 9308, 88562, 927584, 10603178, 131368648, 1753970380, 25112732512, 383925637137, 6243618722124, 107644162715098, 1961478594977856, 37671587406585006, 760654555198989240, 16110333600696417780, 357148428086308848480, 8271374327887650503130
Offset: 2

Views

Author

Paolo Salvatore and Roberto Tauraso, Feb 05 2008, Feb 22 2008

Keywords

Comments

a(n) is the number of generators in arity n of the operad Lie, when considered as a free non-symmetric operad.

Crossrefs

Cf. A075834.

Programs

  • Mathematica
    terms = 23; F[x_] = Sum[n! x^n, {n, 0, terms+1}]; CoefficientList[(x - InverseSeries[Series[x F[x], {x, 0, terms+1}], x])/x^2, x] (* Jean-François Alcover, Feb 17 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    F = sum(n=0,N,x^n*n!);
    gf= x - serreverse(x*F);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */

Formula

a(2) = 1, a(n) = Sum_{k=2..n-2} ((k+1)*a(k+1) + a(k))*a(n-k), n > 2;
G.f.: x - series_reversion(x*F(x)), where F(x) is the g.f. of the factorials (A000142).
a(n) = (1/e)*(1 - 3/n - 5/(2n^2) + O(1/n^3)).
Previous Showing 31-36 of 36 results.