A338697
a(n) = [x^n] Product_{k>=1} 1 / (1 - n^(k-1)*x^k).
Original entry on oeis.org
1, 1, 3, 13, 101, 931, 12391, 178809, 3331721, 66288142, 1589753211, 40104031166, 1183380156013, 36187564837217, 1262524447510383, 45533370885563716, 1834219414937219601, 76016894083755947753, 3479900167920331954531, 162982921698852088968886, 8341707623665223127224821
Offset: 0
Cf.
A008284,
A075900,
A124577,
A300579,
A338673,
A338674,
A338675,
A338676,
A338677,
A338678,
A338679,
A344095.
-
Table[SeriesCoefficient[Product[1/(1 - n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Length[IntegerPartitions[n, {k}]] n^(n - k), {k, 0, n}], {n, 1, 20}]]
Join[{1}, Table[SeriesCoefficient[x + (n-1)/(n*QPochhammer[1/n, n*x]), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)
A370337
Expansion of Product_{n>=1} (1 - 2^(n-1)*x^n) * (1 + 2^(n-1)*x^n)^2.
Original entry on oeis.org
1, 1, 1, 5, 6, 22, 40, 108, 192, 536, 1072, 2528, 5344, 12288, 26624, 61312, 129024, 286720, 646656, 1389568, 3028992, 6717440, 14708736, 31604736, 69763072, 150110208, 329809920, 714473472, 1546649600, 3324772352, 7332954112, 15626403840, 33840693248, 73194799104, 158456610816
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 6*x^4 + 22*x^5 + 40*x^6 + 108*x^7 + 192*x^8 + 536*x^9 + 1072*x^10 + 2528*x^11 + 5344*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 2*x^2)*(1 + 2*x^2)^2 * (1 - 4*x^3)*(1 + 4*x^3)^2 * (1 - 8*x^4)*(1 + 8*x^4)^2 * ... * (1 - 2^(n-1)*x^n)*(1 + 2^(n-1)*x^n)^2 * ...
Compare A(x) to the series that results from a similar infinite product:
(1 - 2*x)*(1 + 2*x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 8*x^3)*(1 + 8*x^3)^2 * (1 - 16*x^4)*(1 + 16*x^4)^2 * ... = 1 + 2*x + 8*x^3 + 64*x^6 + 1024*x^10 + 32768*x^15 + 2097152*x^21 + 268435456*x^28 + 68719476736*x^36 + ...
-
CoefficientList[Series[8*QPochhammer[1/2, 2*x] * QPochhammer[-1/2, 2*x]^2/9, {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 26 2024 *)
-
{a(n) = polcoeff( prod(k=1,n, (1 - 2^(k-1)*x^k) * (1 + 2^(k-1)*x^k)^2 +x*O(x^n)), n)}
for(n=0,40, print1(a(n),", "))
A358904
Number of finite sets of compositions with all equal sums and total sum n.
Original entry on oeis.org
1, 1, 2, 4, 9, 16, 38, 64, 156, 260, 632, 1024, 2601, 4096, 10208, 16944, 40966, 65536, 168672, 262144, 656980, 1090240, 2620928, 4194304, 10862100, 16781584, 41940992, 69872384, 168403448, 268435456, 693528552, 1073741824, 2695006177, 4473400320, 10737385472
Offset: 0
The a(1) = 1 through a(4) = 9 sets:
{(1)} {(2)} {(3)} {(4)}
{(11)} {(12)} {(13)}
{(21)} {(22)}
{(111)} {(31)}
{(112)}
{(121)}
{(211)}
{(1111)}
{(2),(11)}
The case of sets of partitions is
A359041.
A001970 counts multisets of partitions.
-
Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
-
a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ Michel Marcus, Dec 14 2022
A300581
Expansion of Product_{k>=1} 1/(1 - 2^(k+1)*x^k).
Original entry on oeis.org
1, 4, 24, 112, 544, 2368, 10624, 44800, 190976, 791552, 3282944, 13414400, 54829056, 222117888, 899383296, 3625123840, 14601027584, 58659700736, 235555782656, 944552017920, 3786334535680, 15166305468416, 60736264994816, 243129089261568, 973133053952000
Offset: 0
-
nmax = 25; CoefficientList[Series[Product[1/(1-2^(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A355387
Number of ways to choose a distinct subsequence of an integer composition of n.
Original entry on oeis.org
1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0
The a(3) = 14 pairings of a composition with a chosen subsequence:
(3)() (3)(3)
(21)() (21)(1) (21)(2) (21)(21)
(12)() (12)(1) (12)(2) (12)(12)
(111)() (111)(1) (111)(11) (111)(111)
The case of strict subsequences is
A236002.
The composable case is
A355384, homogeneous without containment
A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.
Cf.
A011782,
A022811,
A032020,
A063834,
A133494,
A181591,
A323583,
A331330,
A336128,
A336130,
A336139,
A355382,
A355383.
-
Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
-
lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025
A352402
Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0
-
nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]
Comments