cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A083251 Numbers n such that abs(A045763(n) - A073757(n)) = 2, i.e., signed difference of size of related and unrelated sets to n equals either 2 or -2.

Original entry on oeis.org

2, 48, 72, 80, 112, 176, 208, 272, 304, 368, 464, 496, 592, 656, 688, 752, 848, 944, 976, 1072, 1136, 1168, 1264, 1328, 1424, 1552, 1616, 1648, 1712, 1744, 1808, 2032, 2096, 2192, 2224, 2384, 2416, 2512, 2608, 2672, 2768, 2864, 2896
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Examples

			For n=2896: d=10 divisors, r=1440 coprimes, u=1447 unrelated or n - u = r + d - 1 = 1449 related numbers to n; thus abs(1449 - 1447) = 2.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 2], Print[n(*, {d, r, u}*)]], {n, 1, 3000}]

Formula

a(n) = 8 * (A076274(n-1) + 1) for n > 3, as proved by Lawrence Sze. - Ralf Stephan, Nov 16 2004

A023582 Number of distinct prime divisors of 2*prime(n)-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 3, 1, 2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 3, 2, 1, 2, 3, 2, 3, 1, 2, 1, 2, 1, 1, 3, 2, 3, 2, 1, 2, 1, 3, 3, 2, 2, 2, 2, 1, 3, 2, 1, 3, 3, 2, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 3
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    seq(nops(numtheory:-factorset(2*ithprime(n)-1)),n=1..120); # Muniru A Asiru, Apr 29 2019
  • Mathematica
    PrimeNu[2*Prime[Range[100]]-1] (* Harvey P. Dale, Jan 25 2015 *)
  • PARI
    a(n) = omega(2*prime(n)-1); \\ Michel Marcus, Oct 01 2013

Formula

a(n) = A001221(A076274(n)). - Michel Marcus, Oct 01 2013

A023583 Greatest prime divisor of 2*prime(n)-1.

Original entry on oeis.org

3, 5, 3, 13, 7, 5, 11, 37, 5, 19, 61, 73, 3, 17, 31, 7, 13, 11, 19, 47, 29, 157, 11, 59, 193, 67, 41, 71, 31, 5, 23, 29, 13, 277, 11, 43, 313, 13, 37, 23, 17, 19, 127, 11, 131, 397, 421, 89, 151, 457, 31, 53, 37, 167, 19, 7, 179, 541, 79, 17, 113, 13, 613, 23, 5
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2*prime(n)-1 if n is in A137288. - Robert Israel, May 19 2020

Crossrefs

Programs

  • Maple
    f:= n -> max(numtheory:-factorset(2*ithprime(n)-1)):
    map(f, [$1..100]); # Robert Israel, May 19 2020
  • Mathematica
    a[n_] := FactorInteger[2*Prime[n]-1][[-1, 1]]; Array[a, 100] (* Amiram Eldar, Oct 27 2024 *)
  • PARI
    a(n) = {my(f = factor(2*prime(n)-1)); f[#f~, 1];} \\ Amiram Eldar, Oct 27 2024

Formula

a(n) = A006530(A076274(n+1)). - Bernard Schott, May 20 2020

Extensions

Name edited by Robert Israel, May 19 2020

A141295 Largest m<=n such that all k with 1<=k<=m are divisors of n or coprime to n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 5, 5, 3, 11, 7, 13, 3, 5, 5, 17, 3, 19, 5, 5, 3, 23, 8, 9, 3, 5, 5, 29, 3, 31, 5, 5, 3, 9, 7, 37, 3, 5, 5, 41, 3, 43, 5, 5, 3, 47, 8, 13, 3, 5, 5, 53, 3, 9, 5, 5, 3, 59, 7, 61, 3, 5, 5, 9, 3, 67, 5, 5, 3, 71, 9, 73, 3, 5, 5, 13, 3, 79, 5, 5, 3, 83, 7, 9, 3, 5, 5, 89, 3, 13, 5, 5, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2008

Keywords

Comments

n mod a(n) = 0 or GCD(n,a(n)) = 1;
a(n) = n iff n=1 or n=4 or n is prime; a(A046022(n))=A046022(n);
a(p^2) = 2*p - 1 for odd primes p.

Crossrefs

A196127 Union of p-1, 2p-1 and 3p-1 where p is a prime (without repetition).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 22, 25, 28, 30, 32, 33, 36, 37, 38, 40, 42, 45, 46, 50, 52, 56, 57, 58, 60, 61, 66, 68, 70, 72, 73, 78, 81, 82, 85, 86, 88, 92, 93, 96, 100, 102, 105, 106, 108, 110, 112, 117, 121, 122, 126, 128, 130
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 28 2011

Keywords

Crossrefs

Programs

  • Maple
    lim:=70: S:={}: p:=1: for n from 1 to lim do p:=nextprime(p): S := S union {p-1,2*p-1,3*p-1}: od: op(1..lim,S); # Nathaniel Johnston, Sep 28 2011
  • Mathematica
    With[{upto=130},Select[{#-1,2#-1,3#-1}&/@Prime[Range[PrimePi[upto]+1]]//Flatten//Union,#<=upto&]] (* Harvey P. Dale, Apr 22 2016 *) (* or *)
    Select[Range@130, Or @@ PrimeQ[(#+1)/{1,2,3}] &] (* Giovanni Resta, Apr 30 2019 *)

Extensions

Entries checked by R. J. Mathar, Sep 28 2011

A229989 Number of primes in the interval [floor(n/2), floor(3n/2)].

Original entry on oeis.org

0, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 13, 14, 14, 14, 15, 16, 16, 16, 17, 18, 18, 18
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2013

Keywords

Comments

Conjectures:
(1) a(n+1) - a(n) = 1 for infinitely many n;
(2) a(n+1) - a(n) = -1 for infinitely many n;
(3) a(n+1) - a(n) = -1 if and only if n = 2*prime(m+1) - 1.

Examples

			a(5) = 4 counts the primes in the interval [2,7].
		

Crossrefs

Programs

  • Maple
    with(numtheory): A229989 := proc(n) return pi(floor((3/2)*n))-pi(floor(n/2)-1): end proc: seq(A229989(n), n=1..75); # Nathaniel Johnston, Oct 11 2013
  • Mathematica
    z = 1000; c[n_] := PrimePi[Floor[3 n/2]] - PrimePi[Floor[n/2]-1];
    t = Table[c[n], {n, 1, z}];            (* A229989 *)
    Flatten[Position[Differences[t], -1]]  (* A076274? *)
    Flatten[Position[Differences[t], 1]]   (* A229990 *)

A229990 Numbers k such that the interval [floor((k+1)/2), floor(3*(k+1)/2)] contains more primes than the interval [floor(k/2), floor(3*k/2)] does.

Original entry on oeis.org

1, 3, 4, 8, 12, 19, 20, 24, 28, 31, 40, 44, 48, 52, 55, 64, 67, 68, 71, 72, 84, 91, 92, 99, 100, 104, 108, 111, 115, 120, 127, 128, 131, 132, 140, 148, 151, 152, 155, 160, 171, 175, 180, 184, 187, 188, 204, 208, 211, 220, 224, 231, 232, 235, 239, 244, 248, 252
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2013

Keywords

Examples

			4 is in this sequence because [[5/2], [15/2]] contains the primes 2,3,5,7, while [[4/2], [12/2]] contains the primes 2,3,5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): isA229990 := proc(n) return pi(floor(3*(n+1)/2))-pi(floor((n+1)/2)-1) > pi(floor(3*n/2))-pi(floor(n/2)-1): end proc: seq(`if`(isA229990(n),n,NULL), n=1..252); # Nathaniel Johnston, Oct 11 2013
  • Mathematica
    z = 1000; c[n_] := PrimePi[Floor[3 n/2]] - PrimePi[Floor[n/2]-1];
    t = Table[c[n], {n, 1, z}];            (* A229989 *)
    Flatten[Position[Differences[t], -1]]  (* A076274? *)
    Flatten[Position[Differences[t], 1]]   (* A229990 *)

A247787 Sum of divisors of 2*prime(n)-1.

Original entry on oeis.org

4, 6, 13, 14, 32, 31, 48, 38, 78, 80, 62, 74, 121, 108, 128, 192, 182, 133, 160, 192, 180, 158, 288, 240, 194, 272, 252, 288, 256, 403, 288, 390, 448, 278, 480, 352, 314, 434, 494, 576, 576, 381, 512, 576, 528, 398, 422, 540, 608, 458, 768, 702, 532, 672
Offset: 1

Views

Author

Jaroslav Krizek, Sep 24 2014

Keywords

Comments

See A005382 (primes p such that sigma(2p-1) = 2p).

Examples

			For n = 3; prime(3) = 5, a(3) = sigma(2*5-1) = sigma(9) = 13.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(2*p-1): p in PrimesUpTo(2000)]
    
  • PARI
    vector(100,n,sigma(2*prime(n)-1)) \\ Derek Orr, Sep 25 2014

Formula

a(n) = sigma(A076274(n)) = A000203(A076274(n)).

A247788 Primes p such that sigma(2p-1) = 3*(p-1).

Original entry on oeis.org

3, 17, 131, 193, 449, 13469, 23297, 581150417
Offset: 1

Views

Author

Jaroslav Krizek, Sep 24 2014

Keywords

Comments

Primes p such that A247787(p) = A000203(A076274(p)) = 3*(p-1).
If a(9) exists it must be bigger than 10^10.

Examples

			Prime 17 is in sequence because sigma(2*17-1) = sigma(33) = 48 = 3*(17-1).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000)| SumOfDivisors(2*p-1) eq 3*p-3]
    
  • Mathematica
    Select[Prime@ Range[10^5], DivisorSigma[1, 2 # - 1] == 3 (# - 1) &] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    forprime(p=1,10^7,if(sigma(2*p-1)==3*(p-1),print1(p,", "))) \\ Derek Orr, Sep 25 2014

Extensions

a(8) from Matthew Campbell, Jan 03 2017

A023585 Least prime divisor of 2*prime(n)-1.

Original entry on oeis.org

3, 5, 3, 13, 3, 5, 3, 37, 3, 3, 61, 73, 3, 5, 3, 3, 3, 11, 7, 3, 5, 157, 3, 3, 193, 3, 5, 3, 7, 3, 11, 3, 3, 277, 3, 7, 313, 5, 3, 3, 3, 19, 3, 5, 3, 397, 421, 5, 3, 457, 3, 3, 13, 3, 3, 3, 3, 541, 7, 3, 5, 3, 613, 3, 5, 3, 661, 673, 3, 17, 3, 3, 733, 5, 757, 3, 3, 13, 3, 19, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1,1]]&/@(2Prime[Range[90]]-1) (* Harvey P. Dale, Oct 08 2017 *)
  • PARI
    a(n) = factor(2*prime(n)-1)[1, 1]; \\ Michel Marcus, Oct 01 2013

Extensions

Definition edited by Michel Marcus, Oct 01 2013
Previous Showing 11-20 of 28 results. Next