cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A077332 Smallest number beginning with 7 and having exactly n distinct prime divisors.

Original entry on oeis.org

7, 72, 70, 714, 7140, 71610, 746130, 70136220, 703600590, 70015935990, 700288518930, 7420738134810, 701098433345310, 70007243563797540, 757887406446280110, 70025936403159126390, 7001749954335151685670, 700007496840185797172910
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Examples

			a(3) = 70 = 2*5*7.
		

Crossrefs

Extensions

a(5)-a(10) from Ray Chandler, Apr 17 2005
More terms from Ray Chandler, May 02 2005

A077333 Smallest number beginning with 8 and having exactly n distinct prime divisors.

Original entry on oeis.org

8, 80, 84, 840, 8190, 81510, 870870, 80059980, 800509710, 8254436190, 800680310430, 8222980095330, 800160280950030, 80008785365579070, 843685980760953330, 80058789202898516010, 8001338333881400327820, 800009744613910196656290
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Examples

			a(3) = 84 = 2^2*3*7.
		

Crossrefs

Extensions

Corrected and extended by Sascha Kurz, Jan 30 2003
a(9)-a(10) from Ray Chandler, Apr 17 2005
More terms from Ray Chandler, May 02 2005

A106412 Smallest number beginning with 2 that is the product of exactly n distinct primes.

Original entry on oeis.org

2, 21, 222, 210, 2310, 201630, 2012010, 20030010, 223092870, 20090100030, 200560490130, 20055767721990, 2000029432190790, 20384767656323070, 2000848249650860610, 200001648981983238390, 2183473617971732996910
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 2, a(5) = 2310 = 2*3*5*7*11.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106412(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 2*10**l-1, 3*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106413 Smallest number beginning with 3 that is the product of exactly n distinct primes.

Original entry on oeis.org

3, 33, 30, 330, 3570, 30030, 3015870, 30120090, 300690390, 30043474230, 304075581810, 30035662366710, 304250263527210, 30078810535603830, 3001252188252588270, 32589158477190044730, 3003056284355533696290
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 3, a(6) = 30030 = 2*3*5*7*11*13.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t, p, x, i,L,v,Lp;
        initialize(pq);
        L:= [seq(ithprime(i),i=1..n)];
        v:= convert(L,`*`);
        insert([-v, L], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if floor(x/10^ilog10(x)) = 3 then return x fi;
          L:= t[2];
          p:= nextprime(L[-1]);
          for i from n to 1 by -1 do
            if i < n and L[i] <> prevprime(L[i+1]) then break fi;
            Lp:= [op(L[1..i-1]),op(L[i+1..n]),p];
            insert([-convert(Lp,`*`),Lp], pq)
        od od;
    end proc:
    map(f, [$1..30]); # Robert Israel, Sep 12 2024
  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106413(n):
        if n == 1: return 3
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 3*10**l-1, 4*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106414 Smallest number beginning with 4 that is the product of exactly n distinct primes.

Original entry on oeis.org

41, 46, 42, 462, 4290, 43890, 4001970, 40029990, 406816410, 40026056070, 408036859230, 40013061952710, 405332750552730, 40111962162442170, 4000228915204892370, 40909794684132183810, 4000669166940700163910
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 41, a(3) = 42 = 2*3*7..
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106414(n):
        if n == 1: return 41
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 4*10**l-1, 5*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106415 Smallest number beginning with 5 that is the product of exactly n distinct primes.

Original entry on oeis.org

5, 51, 506, 510, 5610, 51870, 510510, 50169210, 504894390, 50012172210, 503520607590, 50001975553530, 501601785815130, 50073188107872930, 5000089945706645790, 50617203592231346070, 5000858931483646541310
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(4) = 510 = 2*3*5*17.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106415(n):
        if n == 1: return 5
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 5*10**l-1, 6*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106416 Smallest number beginning with 6 that is the product of exactly n distinct primes.

Original entry on oeis.org

61, 6, 66, 690, 6006, 62790, 690690, 60138078, 606996390, 6469693230, 600319429710, 60007743265470, 600277546959090, 60039293728424010, 614889782588491410, 60865792091025932010, 6000526229622444289770
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(3) = 66 = 2*3*11.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106416(n):
        if n == 1: return 61
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 6*10**l-1, 7*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106417 Smallest number beginning with 7 that is the product of exactly n distinct primes.

Original entry on oeis.org

7, 74, 70, 714, 7410, 71610, 746130, 70387590, 703600590, 70015935990, 700288518930, 7420738134810, 701098433345310, 70016268785853390, 757887406446280110, 70025936403159126390, 7001749954335151685670
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(3) = 70 = 2*5*7.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106417(n):
        if n == 1: return 7
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 7*10**l-1, 8*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106418 Smallest number beginning with 8 that is the product of exactly n distinct primes.

Original entry on oeis.org

83, 82, 805, 858, 8610, 81510, 870870, 80150070, 800509710, 8254436190, 800680310430, 8222980095330, 800160280950030, 80008785365579070, 843685980760953330, 80058789202898516010, 8003887646839494820410
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(3) = 805 = 5*7*23.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, primorial
    def A106418(n):
        if n == 1: return 83
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin,kmax,mmin,mmax):
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                mmid = f(kmid)
                if mmid > mmin:
                    kmax, mmax = kmid, mmid
                else:
                    kmin, mmin = kmid, mmid
            return kmax
        for l in count(len(str(primorial(n)))-1):
            kmin, kmax = 8*10**l-1, 9*10**l-1
            mmin, mmax = f(kmin), f(kmax)
            if mmax>mmin: return bisection(f,kmin,kmax,mmin,mmax) # Chai Wah Wu, Aug 31 2024

A106422 Smallest number beginning with 2 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

2, 21, 20, 24, 200, 216, 288, 256, 2592, 2304, 2048, 20736, 20480, 24576, 204800, 221184, 294912, 262144, 2654208, 2359296, 2097152, 21233664, 20971520, 25165824, 209715200, 226492416, 201326592, 268435456, 2013265920, 2415919104
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 2, a(5) = 200 = 2^3*5^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t, p, x, i;
        initialize(pq);
        insert([-2^n, 2$n], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if floor(x/10^ilog10(x)) = 2 then return x fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
          od;
        od
    end proc:
    map(f, [$1..40]); # Robert Israel, Apr 15 2025
  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106422(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024
Previous Showing 11-20 of 26 results. Next