cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A265071 Coordination sequence for (3,3,4) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 31, 44, 62, 87, 122, 171, 240, 336, 471, 660, 925, 1296, 1816, 2545, 3566, 4997, 7002, 9812, 13749, 19266, 26997, 37830, 53010, 74281, 104088, 145855, 204382, 286394, 401315, 562350, 788003, 1104204, 1547286, 2168163, 3038178, 4257303, 5965624, 8359440, 11713819, 16414204, 23000705, 32230160
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,10,15,22,31]; [n le 7 select I[n] else Self(n-2)+Self(n-3)+Self(n-4)- Self(n-6): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^4 - x^3 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-x^3-x^2+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-x^3-x^2+1).
a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-6) for n>6. - Vincenzo Librandi, Dec 30 2015

A265072 Coordination sequence for (3,3,5) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 25, 38, 57, 86, 130, 196, 295, 444, 669, 1008, 1518, 2286, 3443, 5186, 7811, 11764, 17718, 26686, 40193, 60536, 91175, 137322, 206826, 311508, 469173, 706638, 1064293, 1602970, 2414290, 3636248, 5476683, 8248628, 12423553, 18711556, 28182142, 42446130, 63929631, 96286698, 145020831, 218421048
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
    LinearRecurrence[{1,0,1,0,1,-1},{1,3,6,10,16,25,38},50] (* Harvey P. Dale, Oct 07 2022 *)
  • PARI
    x='x+O('x^50); Vec((x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1).

A265073 Coordination sequence for (3,3,6) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 26, 41, 64, 99, 154, 240, 374, 582, 905, 1408, 2191, 3410, 5306, 8256, 12846, 19989, 31104, 48399, 75310, 117184, 182342, 283730, 441493, 686976, 1068955, 1663326, 2588186, 4027296, 6266594, 9751009, 15172864, 23609435, 36736994, 57163872, 88948710, 138406878, 215365281, 335114880, 521448871
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^3 + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+1)*(x^2+x+1)*(x+1)/(x^6-x^5-x^4+x^3-x^2-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+1)*(x^2+x+1)*(x+1)/(x^6-x^5-x^4+x^3-x^2-x+1).

A265074 Coordination sequence for (3,3,7) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 26, 42, 67, 106, 167, 264, 418, 662, 1048, 1658, 2623, 4150, 6567, 10392, 16444, 26020, 41172, 65148, 103087, 163120, 258113, 408424, 646268, 1022620, 1618140, 2560460, 4051537, 6410938, 10144329, 16051850, 25399600, 40190986, 63596094, 100631100, 159233337, 251962422, 398692029, 630869210
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,10,16,26,42,67,106]; [n le 9 select I[n] else Self(n-1)+Self(n-3)+Self(n-5)+Self(n-7)-Self(n-8): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^8 - x^7 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^8-x^7-x^5-x^3-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^8-x^7-x^5-x^3-x+1).
a(n) = a(n-1)+a(n-3)+a(n-5)+a(n-7)-a(n-8) for n>8. - Vincenzo Librandi, Dec 30 2015

A265075 Coordination sequence for (3,4,4) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 46, 73, 116, 183, 290, 459, 726, 1149, 1818, 2877, 4552, 7203, 11398, 18035, 28538, 45157, 71454, 113065, 178908, 283095, 447954, 708819, 1121598, 1774757, 2808282, 4443677, 7031440, 11126179, 17605478, 27857979, 44080994, 69751437, 110370990, 174645225, 276349380, 437280663, 691929826
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^4 - 2 x^3 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1).

A265076 Coordination sequence for (3,5,5) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 20, 35, 60, 103, 178, 307, 528, 909, 1566, 2697, 4644, 7997, 13772, 23717, 40842, 70333, 121120, 208579, 359190, 618555, 1065204, 1834371, 3158940, 5439959, 9368066, 16132595, 27781680, 47842381, 82388590, 141880057, 244329348, 420755613, 724576428, 1247781333, 2148784026, 3700386173, 6372375104
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - 2 x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    Vec((x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-2*x^3-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015

Formula

G.f.: (x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-2*x^3-x+1).

A265077 Coordination sequence for (3,6,8) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 20, 37, 66, 117, 208, 371, 662, 1179, 2100, 3741, 6666, 11877, 21160, 37699, 67166, 119667, 213204, 379853, 676762, 1205749, 2148216, 3827355, 6818982, 12148995, 21645180, 38563997, 68707298, 122411917, 218094408, 388566507, 692287030, 1233408755, 2197494812, 3915152565, 6975406506, 12427688349
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,11,20,37,66]; [n le 7 select I[n] else Self(n-1)+Self(n-2)+Self(n-4) + Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
  • Mathematica
    CoefficientList[Series[(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^4 - x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    Vec((x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015
    

Formula

G.f.: (x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1).
a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5)-a(n-6) for n>6. - Vincenzo Librandi, Dec 30 2015

A047080 Triangular array T read by rows: T(h,k)=number of paths from (0,0) to (k,h-k) using step-vectors (0,1), (1,0), (1,1) with no right angles between pairs of consecutive steps.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 12, 15, 15, 12, 6, 1, 1, 7, 17, 24, 27, 24, 17, 7, 1, 1, 8, 23, 37, 46, 46, 37, 23, 8, 1, 1, 9, 30, 55, 75, 83, 75, 55, 30, 9, 1, 1, 10, 38, 79, 118, 143, 143, 118, 79, 38, 10, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of reduced alignments between a string of length n and a string of length k. See Andrade et. al. - Peter Bala, Feb 04 2018

Examples

			E.g., row 3 consists of T(3,0)=1; T(3,1)=2; T(3,2)=2; T(3,3)=1.
Triangle begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,  1;
  1,  3,  3,  3,  1;
  1,  4,  5,  5,  4,  1;
  1,  5,  8,  9,  8,  5,  1;
  1,  6, 12, 15, 15, 12,  6,  1;
		

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    A047080:= func< n,k | n eq 0 select 1 else A(n-k, k) >;
    [[A(n,k): k in [1..6]]: n in [1..6]];
    [A047080(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2022
    
  • Maple
    T := proc(n, k) option remember; if n < 0 or k > n then return 0 fi;
    if n < 3 then return 1 fi; if k < iquo(n,2) then return T(n, n-k) fi;
    T(n-1, k-1) + T(n-1, k) - T(n-4, k-2)  end:
    seq(seq(T(n,k), k=0..n), n=0..11); # Peter Luschny, Feb 11 2018
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n<3, 1, kJean-François Alcover, Jul 30 2018 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    def A047080(n,k): return A(n-k, k)
    flatten([[A047080(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 30 2022

Formula

T(h, k) = T(h-1, k-1) + T(h-1, k) - T(h-4, k-2);
Writing T(h, k) = F(h-k, k), generating function for F is (1-xy)/(1-x-y+x^2y^2).
From Peter Bala, Feb 04 2018: (Start)
T(n, k) = (Sum_{i = 0..A} (-1)^i*(n+k-3*i)!/(i!*(n-2*i)!*(k-2*i)!)) - (Sum_{i = 0..B} (-1)^i*(n+k-3*i-2)!/(i!*(n-2*i-1)!*(k-2*i-1)!)), where A = min{floor(n/2), floor(k/2)} and B = min{floor((n-1)/2), floor((k-1)/2)}.
T(2*n, n) = A171155(n). (End)
From G. C. Greubel, Oct 30 2022: (Start) (formulas for triangle T(n,k))
T(n, n-k) = T(n, k).
T(n, n) = A000012(n).
T(n, n-1) = A028310(n-1).
T(n, n-2) = A089071(n-1) = A022856(n+1).
T(2*n, n-1) = A047087(n).
T(2*n+1, n-1) = A047088(n).
Sum_{k=0..n} T(n, k) = (-1)^n*A078042(n) = A001590(n+3).
Sum_{k=0..n} (-1)^k*T(n, k) = A091337(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A047084(n). (End)

Extensions

Sequence recomputed to correct terms from 23rd onward, and recurrence and generating function added by Michael L. Catalano-Johnson (mcj(AT)pa.wagner.com), Jan 14 2000

A080246 Signed version of A035607.

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 8, -6, 1, 2, -12, 18, -8, 1, -2, 16, -38, 32, -10, 1, 2, -20, 66, -88, 50, -12, 1, -2, 24, -102, 192, -170, 72, -14, 1, 2, -28, 146, -360, 450, -292, 98, -16, 1, -2, 32, -198, 608, -1002, 912, -462, 128, -18, 1, 2, -36, 258, -952, 1970, -2364
Offset: 0

Views

Author

Paul Barry, Feb 15 2003

Keywords

Comments

Written as lower triangular matrix this has inverse A080247. Row sums are (1,-1,-1,1,1,-1,-1,1,1,...) Diagonal sums are signed tribonacci numbers A078042
Riordan array((1-x)/(1+x), x*(1-x)/(1+x)). - Philippe Deléham, Jan 05 2014

Examples

			Rows are {1}, {-2,1}, {2,-4,1}, {-2,8,-6,1}, ...
		

Crossrefs

Formula

Columns are generated by (1-x)^k/(1+x)^k
T(n,k)=(-1)^(n+k)*A113413(n,k). - Philippe Deléham, Jan 05 2014
T(n,k)=T(n-1,k-1)-T(n-1,k)-T(n-2,k-1), T(0,0)=1, T(1,0)=-2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 05 2014
Previous Showing 21-29 of 29 results.