cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A366723 a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(floor(n/k)+4,5).

Original entry on oeis.org

1, 5, 21, 50, 121, 236, 447, 736, 1247, 1896, 2898, 4151, 5972, 8146, 11292, 14797, 19643, 25248, 32564, 40663, 51515, 63168, 78119, 94452, 114998, 136933, 164849, 193753, 229714, 268334, 314711, 362824, 422746, 483950, 558046, 635070, 726461, 820420, 934186, 1048245
Offset: 1

Views

Author

Seiichi Manyama, Oct 24 2023

Keywords

Crossrefs

Partial sums of A366814.
Cf. A365439.

Programs

  • PARI
    a(n) = sum(k=1, n, (-1)^(k-1)*binomial(n\k+4, 5));

Formula

a(n) = Sum_{k=1..n} binomial(k+3,4) * (floor(n/k) mod 2).
G.f.: -1/(1-x) * Sum_{k>=1} (-x)^k/(1-x^k)^5 = 1/(1-x) * Sum_{k>=1} binomial(k+3,4) * x^k/(1+x^k).

A078472 Partial sums of A035282.

Original entry on oeis.org

1, 6, 12, 22, 46, 67, 107, 137, 168, 228, 292, 342, 426, 546, 606, 656, 800, 920, 1044, 1129, 1273, 1473, 1633, 1759, 1850, 2030, 2270, 2510, 2665, 2869, 3089, 3389, 3799, 4119, 4275, 4539, 4819, 5029, 5389, 5689, 5993, 6377, 6797, 6967, 7367, 7871, 8231
Offset: 1

Views

Author

Benoit Cloitre, Dec 31 2002

Keywords

Crossrefs

Distinct terms of A353997.

Programs

  • Mathematica
    f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Select[Array[s, 200], # > 0 &]] (* Amiram Eldar, May 13 2022 *)

Extensions

a(20) and a(36) corrected by Georg Fischer, Aug 31 2020

A309124 a(n) = n - 3 * floor(n/3) + 5 * floor(n/5) - 7 * floor(n/7) + ...

Original entry on oeis.org

1, 2, 0, 1, 7, 5, -1, 0, 7, 13, 3, 1, 15, 9, -3, -2, 16, 23, 5, 11, 23, 13, -9, -11, 20, 34, 14, 8, 38, 26, -4, -3, 17, 35, -1, 6, 44, 26, -2, 4, 46, 58, 16, 6, 48, 26, -20, -22, 21, 52, 16, 30, 84, 64, 4, -2, 34, 64, 6, -6, 56, 26, -16, -15, 69, 89, 23, 41, 85, 49, -21, -14, 60, 98, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2019

Keywords

Comments

Partial sums of A050457.

Crossrefs

Programs

  • Maple
    f:= proc(n) local r,d;
      r:= n/2^padic:-ordp(n,2);
      add((-1)^((d-1)/2)*d, d = numtheory:-divisors(r))
    end proc:
    ListTools:-PartialSums(map(f,[$1..100])); # Robert Israel, Oct 28 2020
  • Mathematica
    Table[Sum[(-1)^(k + 1) (2 k - 1) Floor[n/(2 k - 1)], {k, 1, n}], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[1/(1 - x) Sum[(-1)^(k + 1) (2 k - 1) x^(2 k - 1)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} (-1)^(k+1) * (2*k - 1) * x^(2*k-1)/(1 - x^(2*k-1)).

A024930 a(n) = sum of remainders of n mod 1,3,5,...,2k-1, where k = [ (n+1)/2 ].

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 3, 6, 6, 5, 9, 11, 16, 15, 13, 20, 27, 23, 31, 35, 34, 33, 43, 51, 57, 56, 56, 62, 75, 66, 80, 95, 96, 95, 99, 104, 121, 120, 122, 136, 155, 144, 164, 174, 163, 162, 184, 204, 220, 214, 218, 230, 255, 242, 252, 272, 277, 276, 304, 310, 339, 338, 328, 359, 372, 357
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A093005(n) - A078471(n). - Robert Israel, May 13 2019

A333194 a(n) = Sum_{k=1..n} (ceiling(n/k) mod 2) * k.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 11, 11, 19, 16, 21, 21, 30, 30, 37, 29, 45, 45, 51, 51, 66, 56, 67, 67, 88, 83, 96, 84, 105, 105, 112, 112, 144, 130, 147, 135, 159, 159, 178, 162, 197, 197, 208, 208, 241, 209, 232, 232, 277, 270, 290, 270, 309, 309, 324, 308, 357, 335, 364, 364
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= n-> add(d, d=select(x-> x::odd, numtheory[divisors](n))):
    a:= proc(n) option remember; n+`if`(n<2, 0, a(n-1))-b(n-1) end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 25 2020
  • Mathematica
    Table[Sum[Mod[Ceiling[n/k], 2] k, {k, 1, n}], {n, 1, 60}]
    Table[n (n + 1)/2 - Sum[DivisorSum[k, (-1)^(k/# + 1) # &], {k, 1, n - 1}], {n, 1, 60}]
    nmax = 60; CoefficientList[Series[x/(1 - x) (1/(1 - x)^2 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, (ceil(n/k) % 2)*k); \\ Michel Marcus, May 26 2020

Formula

G.f.: (x/(1 - x)) * (1/(1 - x)^2 - Sum_{k>=1} k * x^k / (1 + x^k)).
a(n) = n*(n + 1)/2 - Sum_{k=1..n-1} A000593(k).
a(n) = A000217(n) - A078471(n-1).

A262535 Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A261699.

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 5, 8, 6, 8, 3, 7, 15, 3, 8, 15, 3, 9, 24, 6, 10, 24, 6, 5, 11, 35, 6, 5, 12, 35, 9, 5, 13, 48, 9, 5, 14, 48, 9, 12, 15, 63, 12, 12, 5, 16, 63, 12, 12, 5, 17, 80, 12, 12, 5, 18, 80, 15, 21, 5, 19, 99, 15, 21, 5, 20, 99, 15, 21, 10, 21, 120, 18, 21, 10, 7, 22, 120, 18, 32, 10, 7, 23, 143, 18, 32, 10, 7, 24, 143, 21, 32, 10, 7, 25, 168, 21, 32, 15, 7, 26, 168, 21, 45, 15, 7, 27, 195, 24, 45, 15, 16
Offset: 1

Views

Author

Omar E. Pol, Sep 24 2015

Keywords

Comments

Conjecture: the sum of row n gives A078471(n), the sum of all odd divisors of all positive integers <= n.
Row n has length A003056(n) hence column k starts in row A000217(k).
Column 1 gives A000027.

Examples

			Triangle begins:
1;
2;
3,    3;
4,    3;
5,    8;
6,    8,  3;
7,   15,  3;
8,   15,  3;
9,   24,  6;
10,  24,  6,  5;
11,  35,  6,  5;
12,  35,  9,  5;
13,  48,  9,  5;
14,  48,  9, 12;
15,  63, 12, 12,  5;
16,  63, 12, 12,  5;
17,  80, 12, 12,  5;
18,  80, 15, 21,  5;
19,  99, 15, 21,  5;
20,  99, 15, 21, 10;
21, 120, 18, 21, 10,  7;
22, 120, 18, 32, 10,  7;
23, 143, 18, 32, 10,  7;
24, 143, 21, 32, 10,  7;
25, 168, 21, 32, 15,  7;
26, 168, 21, 45, 15,  7;
27, 195, 24, 45, 15, 16;
...
For n = 6 the sum of all odd divisors of all positive integers <= 6 is (1) + (1) + (1 + 3) + (1) + (1 + 5) + (1 + 3) = 17. On the other hand the sum of the 6th row of triangle is 6 + 8 + 3 = 17 equaling the sum of all odd divisors of all positive integers <= 6.
		

Crossrefs

Previous Showing 11-16 of 16 results.