cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A116428 The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 22, 125, 669, 3410, 16677, 78369, 359110, 1612613, 7133274, 31185350, 135062165, 580556958, 2480278767, 10542976739, 44626102826, 188215850830, 791374442571, 3318478309647, 13882441625034, 57952990683107
Offset: 0

Views

Author

Robert G. Wilson v, Feb 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];
    Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* Eric W. Weisstein, Feb 07 2006 *)
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(15)-a(18) from Donovan Johnson, Oct 01 2010
a(19)-a(21) from Daniel Suteu, Jul 10 2023

A116429 The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 9^n], {n, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(14)-a(16) from Donovan Johnson, Oct 01 2010
a(16) corrected and a(17)-a(19) from Daniel Suteu, Jul 10 2023

A116431 The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.

Original entry on oeis.org

1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 12^n], {n, 12}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A116431(n):
        if n<=1: return 4*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024

Extensions

a(13)-a(14) from Donovan Johnson, Oct 01 2010
a(15)-a(16) from Daniel Suteu, Jul 10 2023

A116432 The number of n-almost primes less than or equal to e^n, starting with a(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 12, 18, 24, 37, 54, 74, 107, 159, 218, 315, 450, 634, 888, 1269, 1782, 2496, 3520, 4933, 6899, 9681, 13555, 18888, 26407, 36855, 51352, 71526, 99654, 138608, 192708, 267833, 372107, 516420, 716816, 994191, 1378195, 1909694
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, E^n], {n, 42}]

A122943 Odd numbers n ordered by n/2^BigOmega(n), where BigOmega(n) is the number of prime divisors of n with repetition.

Original entry on oeis.org

1, 3, 9, 5, 27, 7, 15, 81, 21, 11, 45, 25, 13, 243, 63, 33, 135, 17, 35, 75, 19, 39, 729, 23, 189, 49, 99, 405, 51, 105, 55, 225, 57, 29, 117, 31, 125, 65, 2187, 69, 567, 147, 37, 297, 1215, 153, 77, 315, 41, 165, 675, 85, 171, 43, 87, 175, 351, 91, 93, 375, 47, 95, 195
Offset: 1

Views

Author

Keywords

Comments

This is the limit of the sequence of largest odd factors of the k-almost primes as k -> infinity.
The location of 3^k in this sequence is A078843(k).
Removing 1 and prime numbers from this sequence gives A374074. - Friedjof Tellkamp, Nov 27 2024

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* from Eric Weisstein, Feb 07 2006 *); AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; f[n_] := Block[{ kap = AlmostPrime[20, n]}, kap / 2^IntegerExponent[ kap, 2]]; Array[f, 64] (* or *)
    f[n_] := n/2^PrimeOmega[n]; Take[2 Ordering[ Table[ f[ 2n - 1], {n, 1100}]] - 1, 63] (* Robert G. Wilson v, Feb 08 2011 *)
    f[n_] := n/2^PrimeOmega[n]; nn=9; t = Select[Table[{f[2 n - 1], 2 n - 1}, {n, 3^nn/2 + 1}], #[[1]] <= f[3^nn] &]; Transpose[Sort[t]][[2]]

Formula

A101695(n) = a(n) * 2^(n - BigOmega(a(n))). a(n) = A101695(n) / 2^A007814(A101695(n)) = A000265(A101695(n)).

A116433 Consider the array T(r,c) where is the number of c-almost primes less than or equal to r^c, r >= 1, c >= 0. Read the array by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 3, 1, 0, 1, 3, 6, 5, 1, 0, 1, 3, 9, 13, 8, 1, 0, 1, 4, 13, 30, 34, 14, 1, 0, 1, 4, 17, 50, 90, 77, 23, 1, 0, 1, 4, 22, 82, 200, 269, 177, 39, 1, 0, 1, 4, 26, 125, 385, 726, 788, 406, 64, 1, 0, 1, 5, 34, 181, 669, 1688, 2613, 2249, 887, 103, 1, 0, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			The array begins:
  0 0 0 0 0 0 0 0 0 0 0
  1 1 1 1 1 1 1 1 1 1 1
  1 2 3 5 8 14 23 39 64 103 169
  1 2 6 13 34 77 177 406 887 1962 4225
  1 3 9 30 90 269 788 2249 6340 17526 47911
T(3,2)=3 because there are 3 2-almost primes <= 3^2 = 9, namely 4, 6, and 9 (see A001358).
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ If[k == 0, 1, AlmostPrimePi[n - k + 1, k^(n - k + 1)]], {n, 0, 7}, {k, n, 0, -1}] // Flatten

Extensions

NAME corrected by R. J. Mathar, Jun 20 2021

A209934 a(n) is the first value to occur consecutively in the sequence b_n defined by p_2k(b_n(k)) = p_k(n)^2, k=1,2,3,..., where p_k(n) is the n-th k-almost prime.

Original entry on oeis.org

1, 3, 8, 12, 23, 26, 32, 66, 68, 78, 83, 106, 116, 169, 181, 201, 210, 216, 234, 273, 282, 296, 427, 436, 501, 504, 513, 538, 547, 583, 655, 688, 711, 738, 751, 851, 866, 947, 1065, 1088, 1155, 1274, 1277, 1285, 1350, 1369, 1389, 1456, 1594, 1615, 1702, 1734
Offset: 1

Views

Author

Daniel Tisdale, Mar 15 2012

Keywords

Comments

A k-almost prime has exactly k prime factors, repetitions included.
Conjecture: Each sequence b_n repeats indefinitely. (Example: for n=3, b_n = 9, 8, 8, 8, 8, 8, .... It looks like b_3(k) is 8 for all k > 1.)
The conjecture follows from the formula that uses A078843 below (and the strict monotonicity of A078843). However the first repeated value is not for every n the value that repeats indefinitely. For example a(8) = b_8(2) = b_8(3) = 66, but b_8(k) = 64 for k >= 4. - Peter Munn, Aug 05 2019

Examples

			for k = 1, 2, 3, 4, 5, 6, ...:
p_k(3) = 5, 9, 18, 36, 72, 144, ... (the 3rd k-almost prime);
p_k(3)^2 = 25, 81, 324, 1296, 5184, 20736, ...;
b_3(k) = 9, 8, 8, 8, 8, 8, ... (index in the 2k-almost primes);
so since b_3(3) = b_3(2) = 8, a(3) = 8.
		

Crossrefs

Programs

  • PARI
    get_p(m,k) = {local(i,n);i=0;n=1;while(iA209934(n) = {local(m,k,k_old);m=3;k_old=get_k(2,get_p(1,n)^2);k=get_k(4,get_p(2,n)^2);while(kMichael B. Porter, Mar 20 2012

Formula

From Peter Munn, Aug 05 2019: (Start)
b_n(k) = A058933(A078840(k,n)^2).
a(n) = b_n(min {k : b_n(k) = b_n(k+1)}).
If n < A078843(k+1) and b_n(k) < A078843(2k+1) then b_n(i) = b_n(k) for i >= k.
(End)

Extensions

Edited, correcting the subscripting, by Peter Munn, Aug 04 2019

A289173 The largest n-almost prime less than 3^n.

Original entry on oeis.org

2, 6, 20, 60, 208, 624, 2080, 6240, 18720, 58240, 176000, 529408, 1593344, 4780032, 14344192, 43040768, 129138688, 387416064, 1162248192, 3486777344, 10460332032, 31380996096, 94142988288, 282428964864, 847286894592, 2541860683776, 7625582051328
Offset: 1

Views

Author

Zak Seidov, Jun 26 2017

Keywords

Comments

All terms are even as 3^n is the first odd n-almost prime.

Examples

			a(26) = 2541860683776 = 3^26 - 5144553 = 2^18*3^6*47*283 (a 26-almost prime).
From _Michael De Vlieger_, Jun 27 2017: (Start)
Table of prime factors of a(n) for 1 <= n <= 16:
   1:  2
   2:  2   3
   3:  2   2   5
   4:  2   2   3   5
   5:  2   2   2   2  13
   6:  2   2   2   2   3  13
   7:  2   2   2   2   2   5  13
   8:  2   2   2   2   2   3   5  13
   9:  2   2   2   2   2   3   3   5  13
  10:  2   2   2   2   2   2   2   5   7  13
  11:  2   2   2   2   2   2   2   5   5   5  11
  12:  2   2   2   2   2   2   2   2   2   2  11  47
  13:  2   2   2   2   2   2   2   2   2   2   2   2 389
  14:  2   2   2   2   2   2   2   2   2   2   2   2   3 389
  15:  2   2   2   2   2   2   2   2   2   2   2   2   2  17 103
  16:  2   2   2   2   2   2   2   2   2   2   2   2   2   2  37  71(End)
		

Crossrefs

Cf. A078843 (where 3^n occurs in n-almost primes).

Programs

  • Mathematica
    Table[SelectFirst[Range[3^n - 1, 2^n, -1], PrimeOmega@ # == n &], {n, 18}] (* Michael De Vlieger, Jun 27 2017 *)
  • PARI
    for (n = 1,26, m = 3^n-1; while(bigomega(m) <> n, m = m-2); print1 (m ","))
    
  • PARI
    a(n)=my(target=n-1); forstep(k=3^n\2,1,-1, if(bigomega(k)==target, return(2*k))) \\ Charles R Greathouse IV, Jul 05 2017
    
  • Python
    from math import prod, isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A289173(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def almostprimepi(n,k):
            if k==0: return int(n>=1)
            def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
        m = almostprimepi(3**n-1,n)
        def f(x): return m+x-almostprimepi(x,n)
        return bisection(f,m,m) # Chai Wah Wu, Mar 29 2025

Extensions

a(27) from Jon E. Schoenfield, Jul 02 2017

A337219 a(n) is the least positive number k such that 3^n+k has n prime factors counted with multiplicity.

Original entry on oeis.org

2, 1, 1, 3, 9, 7, 21, 63, 157, 471, 5, 15, 45, 135, 405, 1215, 3645, 10935, 32805, 98415, 295245, 885735, 2657205, 4409119, 2741597, 8224791, 16285765, 15302863, 45908589, 137725767, 77632981, 232898943, 161825917, 485477751, 1456433253, 3027122479, 1565174669
Offset: 1

Views

Author

Zak Seidov, Sep 14 2020

Keywords

Crossrefs

Cf. A078843.

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[PrimeOmega[3^n + k] != n, k++]; k]; Array[a, 20] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = for(k=1, oo, if(bigomega(3^n+k)==n,return(k))); \\ Daniel Suteu, Oct 17 2020

Extensions

a(27)-a(37) from Daniel Suteu, Sep 14 2020
Definition edited by Zak Seidov, Oct 17 2020

A376480 a(n) is the least k such that the sum of the first k numbers with n prime factors, counted with multiplicity, is prime.

Original entry on oeis.org

1, 3, 6, 8, 15, 24, 68, 68, 103, 179, 280, 432, 681, 1078, 1705, 2630, 4110, 6414, 10029, 15611, 24297, 37746, 58506, 90631, 140203, 216630, 334543, 516159, 795637, 1225649, 1886573, 2901816, 4460387, 6851543, 10518523, 16138688
Offset: 1

Views

Author

Robert Israel, Sep 24 2024

Keywords

Comments

For n >=2, a(n) >= A078843(n), as for k < A078843(n) the sum of the first k is even. a(n) = A078843(n) for n = 2, 4, 9, 18, ...

Examples

			a(3) = 6 because the sum of the first 6 triprimes is 8 + 12 + 18 + 20 + 27 + 28 = 113 which is prime, and none of the previous partial sums is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
    uses priqueue;
     local pq, t, s, count,v, w, p, i;
     initialize(pq);
     insert([-2^n, [2$n]],pq);
     s:= 0;
     for count from 1 do
       t:= extract(pq);
       v:= -t[1];
       w:= t[2];
       s:= s+v;
       if isprime(s) then return count fi;
       p:= nextprime(w[-1]);
       for i from n to 1 by -1 while w[i] = w[n] do
          insert([t[1]*(p/w[-1])^(n+1-i),[op(w[1..i-1]),p$(n+1-i)]],pq);
     od od;
    end proc:
    map(f, [$1..36]);
Previous Showing 11-20 of 21 results. Next