A173373 Numbers x such that 0 < |x^12 - y^7| < x^(65/7) for some number y.
11, 39, 163, 876, 259632, 310504, 1521835
Offset: 1
Keywords
Programs
-
Mathematica
Solutions[12,7,10^7] (* see A173348 *)
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Solutions[12,7,10^7] (* see A173348 *)
Solutions[9,8,10^7] (* see A173348 *)
Solutions[11,8,10^7] (* see A173348 *)
Solutions[10,9,10^7] (* see A173348 *)
Solutions[11,9,10^8] (* see A173348 *)
Solutions[11,10,10^7] (* see A173348 *)
121 is a term because it is a square and there are no primes between 123 and 125, its nearest cube.
b[n_] := If[IntegerQ@Sqrt@n, 0, p = NextPrime[n^3]; q = Ceiling[Sqrt[NextPrime[p, -1]]]; If[q^2 >= p, 0, q]]; Select[Array[b@# &, 1000], # > 0 &]^2
aa = {}; bb = {}; max = -1; Do[kk = x^3 - Floor[x^(3/2)]^2; If[kk > max, AppendTo[aa, kk]; AppendTo[bb, x]; max = kk], {x, 1, 10000}]; aa
aa = {}; bb = {}; max = -1; Do[kk = x^3 - Floor[x^(3/2)]^2; If[kk > max, AppendTo[aa, kk]; AppendTo[bb, x]; max = kk], {x, 1, 10000}]; bb
nearestcube(n) = my(x=n-1, y=n+1); while(!ispower(x, 3) && !ispower(y, 3), x--; y++); if(ispower(x, 3), return(x)); if(ispower(y, 3), return(y)) a(n) = abs(n^2 - nearestcube(n^2))
Comments