A144223
Number of ways of placing n labeled balls into n unlabeled (but 6-colored) boxes.
Original entry on oeis.org
1, 6, 42, 330, 2850, 26682, 268098, 2869242, 32510850, 388109562, 4861622850, 63682081530, 869725707522, 12352785293562, 182049635623362, 2778394592545530, 43833623157604482, 713738052924821754
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*6)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
-
Table[BellB[n,6],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
-
expnums(18, 6) # Zerinvary Lajos, May 15 2009
A144263
Number of ways of placing n labeled balls into n unlabeled (but7-colored) boxes.
Original entry on oeis.org
1, 7, 56, 497, 4809, 50134, 558215, 6593839, 82187658, 1076193867, 14749823893, 210926792244, 3138696242941, 48485723853763, 775929767223352, 12840232627455485, 219355194338036309, 3862794707291567670
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*7)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
-
Table[BellB[n,7],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
-
expnums(18, 7) # Zerinvary Lajos, May 15 2009
A129323
Second column of PE^2.
Original entry on oeis.org
0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129323 := proc(n) A078937(n+1,1) ; end: seq(A129323(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 2], {i, 0, n}], {n, -1, 20}] (* Zerinvary Lajos, Jul 16 2009 *)
A129324
Third column of PE^2.
Original entry on oeis.org
0, 0, 1, 6, 36, 220, 1410, 9534, 68040, 511704, 4046310, 33560010, 291244668, 2638581972, 24901833866, 244333004790, 2487900487440, 26245651191600, 286408960814862, 3228529392965250, 37544229610105220, 449858650676764140
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129324 := proc(n) A078937(n+1,2) ; end: seq(A129324(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 2];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129325
Fourth column of PE^2.
Original entry on oeis.org
0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129325 := proc(n) A078937(n+1,3) ; end: seq(A129325(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 3];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
-
m=matpascal(30)-matid(31); pe=matid(31)+sum(i=1,30,m^i/i!); A=pe^2; A[,4] \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
More terms from
R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A129327
Second column of PE^3.
Original entry on oeis.org
0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129327 := proc(n) A078938(n+1,1) ; end: seq(A129327(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 3], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129328
Third column of PE^3.
Original entry on oeis.org
0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129328 := proc(n) A078938(n+1,2) ; end: seq(A129328(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 2];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129329
Fourth column of PE^3.
Original entry on oeis.org
0, 0, 0, 1, 12, 120, 1140, 10815, 104496, 1037484, 10627560, 112508550, 1231481460, 13933510734, 162864103584, 1965078765195, 24453461392080, 313549334233440, 4138796594051568, 56188737057169593, 783876449182595400
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129329 := proc(n) A078938(n+1,3) ; end: seq(A129329(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 3];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129331
Second column of PE^4.
Original entry on oeis.org
0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129331 := proc(n) A078939(n+1,1) ; end: seq(A129331(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 4], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129332
Third column of PE^4.
Original entry on oeis.org
0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129332 := proc(n) A078939(n+1,2) ; end: seq(A129332(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078939[n + 1, 2];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Comments