cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A280193 a(2*n) = 2, a(2*n + 1) = -1, a(0) = 1.

Original entry on oeis.org

1, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2
Offset: 0

Views

Author

Michael Somos, Dec 28 2016

Keywords

Examples

			G.f. = 1 - x + 2*x^2 - x^3 + 2*x^4 - x^5 + 2*x^6 - x^7 + 2*x^8 - x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x+x^2)/(1-x^2))); // G. C. Greubel, Jul 29 2018
  • Mathematica
    a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], -1, True, 2];
    a[ n_] := SeriesCoefficient[ (1 - x + x^2) / (1 - x^2), {x, 0, n}];
    LinearRecurrence[{0,1},{1,-1,2},80] (* Harvey P. Dale, Aug 06 2025 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 - 3*(n%2))};
    
  • PARI
    {a(n) = if( n<1, n==0, [2, -1][n%2 + 1])};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - x + x^2) / (1 - x^2) + x * O(x^n), n))};
    

Formula

Euler transform of length 6 sequence [-1, 2, 1, 0, 0, -1].
Moebius transform is length 2 sequence [-1, 3].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -2 if e>0, b(p^e) = 1 otherwise.
G.f.: (1 - x + x^2) / (1 - x^2).
G.f.: (1 - x) * (1 - x^6) / ((1 - x^3) * (1 -x^2)^2).
G.f.: 1 / (1 + x / (1 + x / (1 - 3*x / (1 + x)))).
a(n) = (-1)^n * A040001(n).
A028242(n) = Sum_{k=0..n} a(k).
A117575(n+1) = Product_{k=0..n} a(k).
A000225(n-1) = Sum_{k=0..n} binomial(n, k) * a(k) if n>0.
A000325(n) = Sum_{k=0..n} binomial(n, k+1) * a(k) if n>0.
a(n) = Sum_{k=0..n} binomial(n, k) * (-1)^k * A083329(k).
A079583(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n.
a(n) = A168361(n+1), n>0. - R. J. Mathar, Jan 04 2017

A097810 a(n) = 7*2^n - 3*n - 6.

Original entry on oeis.org

1, 5, 16, 41, 94, 203, 424, 869, 1762, 3551, 7132, 14297, 28630, 57299, 114640, 229325, 458698, 917447, 1834948, 3669953, 7339966, 14679995, 29360056, 58720181, 117440434, 234880943, 469761964, 939524009, 1879048102, 3758096291
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=(s+=n)+n++;AppendTo[lst, s], {n, 1, 5!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
    Table[7*2^n-3n-6,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2},{1,5,16},30] (* Harvey P. Dale, Nov 15 2011 *)

Formula

G.f.: (1 + x + x^2)/((1-x)^2*(1-2*x)).
a(n) = 2*a(n-1) + 3*n, n > 0, a(0)=1.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
From Elmo R. Oliveira, Mar 06 2025: (Start)
E.g.f.: exp(x)*(7*exp(x) - 3*(x + 2)).
a(n) = A131068(n+1)/2. (End)

A132110 A007318 + A059268 - A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 6, 8, 1, 5, 9, 11, 16, 1, 6, 13, 17, 20, 32, 1, 7, 18, 27, 30, 37, 64, 1, 8, 24, 42, 50, 52, 70, 128, 1, 9, 31, 63, 85, 87, 91, 135, 256, 1, 10, 39, 91, 141, 157, 147, 163, 264, 512
Offset: 0

Views

Author

Gary W. Adamson, Aug 09 2007

Keywords

Comments

Row sums = A079583: (1, 3, 8, 19, 42, 89, 184, ...).

Examples

			First few rows of the triangle:
  1;
  1, 2;
  1, 3,  4;
  1, 4,  6,  8;
  1, 5,  9, 11, 16;
  1, 6, 13, 17, 20, 32;
  1, 7, 18, 27, 30, 37, 64;
  1, 8, 24, 42, 50, 52, 70, 128;
  ...
		

Crossrefs

A227712 a(n) = 9*2^n - 3*n - 5.

Original entry on oeis.org

4, 10, 25, 58, 127, 268, 553, 1126, 2275, 4576, 9181, 18394, 36823, 73684, 147409, 294862, 589771, 1179592, 2359237, 4718530, 9437119, 18874300, 37748665, 75497398, 150994867, 301989808, 603979693, 1207959466, 2415919015, 4831838116, 9663676321, 19327352734
Offset: 0

Views

Author

Emeric Deutsch, Aug 06 2013

Keywords

Comments

Denoting by P[n] the path on n vertices, a(n) is the number of vertices of the tree obtained by identifying the roots of 3 identical rooted trees g[n], where g[n] is obtained recursively in the following manner: g[0]=P[2] and g[n] (n>=1) is obtained by identifying the roots of 2 copies of g[n-1] and one of the extremities of P[n+1]; the root of g[n] is defined to be the other extremity of P[n+1]. Most references contain pictures of these trees; however, the small circles have to be viewed as vertices rather than hexagons.

Examples

			a(1) = 10 because g[1] is the rooted tree in the shape of Y (4 vertices) and a "bouquet" of three Y's has 3*4 - 2 = 10 vertices.
		

Crossrefs

Cf. A079583.

Programs

  • Magma
    [9*2^n-3*n-5: n in [0..40]]; // Vincenzo Librandi, Feb 19 2016
  • Maple
    a := proc (n) options operator, arrow: 9*2^n-3*n-5 end proc: seq(a(n), n = 0 .. 35);
  • Mathematica
    Table[9*2^n-3n-5,{n,0,40}] (* or *) LinearRecurrence[{4,-5,2},{4,10,25},40] (* Harvey P. Dale, Apr 15 2015 *)
  • PARI
    Vec((4-6*x+5*x^2)/((1-2*x)*(1-x)^2) + O(x^100)) \\ Altug Alkan, Oct 17 2015
    

Formula

G.f.: (4-6*x+5*x^2)/((1-2*x)*(1-x)^2).
a(0)=4, a(1)=10, a(2)=25, a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Harvey P. Dale, Apr 15 2015
a(n)= 3*A079583(n) + 1. - Emeric Deutsch, Feb 18 2016

A271590 First differences of column n of A271589 for arbitrarily large n.

Original entry on oeis.org

3, 4, 2, 3, 4, 11, 1, 2, 4, 2, 3, 4, 12, 26, 3, 4, 2, 1, 2, 4, 11, 1, 2, 4, 2, 3, 4, 12, 36, 71, 3, 4, 2, 3, 4, 11, 1, 2, 4, 2, 1, 2, 4, 12, 26, 3, 4, 2, 1, 2, 4, 11, 1, 2, 4, 2, 3, 4, 12, 36, 108, 206, 3, 4, 2, 3, 4, 11, 1, 2, 4, 2, 3, 4, 12, 26, 3, 4, 2, 1
Offset: 1

Views

Author

Max Barrentine, Apr 10 2016

Keywords

Crossrefs

Formula

For all k>2:
a(A000295(k)) = a(A000295(k+1)) = 3;
For A000295(k)
For n = 2^k-2, a(n) = a(n+2^(k+1)-1), a(2^(k+1)-2) = a(n)+5*3^(k-2);
a(2^(k+1)-3) = 4*3^(k-2);
For 2^k-2A079583(k-1)-1, a(n) = a(n+2^k)=a(n+2^(k+1)-1);
For n = A079583(k-1)-1, a(n) = a(n+2^(k+1)-1) = 1;
For n = A079583(k-1), a(n) = a(n+2^(k+1)-1) = 2;
a(A079583(k-1)+2^k-1) = 3;
For A079583(k-1)A000295(k+1), a(n) = a(n+2^k-1) = a(n+2^(k+1)-1)

A368826 Square array T(n,k) = 3*2^k - n read by ascending antidiagonals.

Original entry on oeis.org

3, 2, 6, 1, 5, 12, 0, 4, 11, 24, -1, 3, 10, 23, 48, -2, 2, 9, 22, 47, 96, -3, 1, 8, 21, 46, 95, 192, -4, 0, 7, 20, 45, 94, 191, 384, -5, -1, 6, 19, 44, 93, 190, 383, 768, -6, -2, 5, 18, 43, 92, 189, 382, 767, 1536, -7, -3, 4, 17, 42, 91, 188, 381, 766, 1535, 3072
Offset: 0

Author

Paul Curtz, Jan 07 2024

Keywords

Comments

Similar to A367559.

Examples

			Table begins:
   3  6 12 24 48 96 ...
   2  5 11 23 47 95 ...
   1  4 10 22 46 94 ...
   0  3  9 21 45 93 ...
  -1  2  8 20 44 92 ...
  -2  1  7 19 43 91 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 3*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 15 2024 *)

Formula

T(0,k) = 3*2^k = A007283(k).
T(1,k) = 3*2^k - 1 = A083329(k+1).
T(2,k) = 3*2^k - 2 = A033484(k).
T(3,k) = 3*2^k - 3 = 3*A000225(k).
T(4,k) = 3*2^k - 4 = -A165751(k).
T(5,k) = 3*2^k - 5 = A048488(k-1)
T(6,k) = 3*2^k - 6 = 3*A000918(k).
Previous Showing 11-16 of 16 results.