A351886 a(n) is the number of k < n such that a(k) AND n = 0 (where AND denotes the bitwise AND operator).
0, 1, 2, 1, 4, 2, 3, 1, 8, 4, 6, 3, 8, 3, 4, 1, 16, 9, 11, 6, 14, 5, 8, 4, 17, 9, 10, 5, 10, 3, 5, 1, 32, 16, 21, 10, 24, 12, 15, 7, 26, 11, 17, 7, 16, 6, 11, 4, 39, 19, 20, 10, 24, 10, 11, 4, 26, 12, 15, 7, 12, 3, 6, 1, 64, 34, 34, 20, 41, 21, 21, 10, 45, 21
Offset: 0
Examples
The first terms, alongside the corresponding k's, are: n a(n) k's -- ---- ------------------------- 0 0 {} 1 1 {0} 2 2 {0, 1} 3 1 {0} 4 4 {0, 1, 2, 3} 5 2 {0, 2} 6 3 {0, 1, 3} 7 1 {0} 8 8 {0, 1, 2, 3, 4, 5, 6, 7} 9 4 {0, 2, 4, 5} 10 6 {0, 1, 3, 4, 7, 9} 11 3 {0, 4, 9} 12 8 {0, 1, 2, 3, 5, 6, 7, 11}
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a:= proc(n) option remember; add( `if`(Bits[And](n, a(j))=0, 1, 0), j=0..n-1) end: seq(a(n), n=0..80); # Alois P. Heinz, Feb 28 2022
-
PARI
for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==0)", "))
-
Python
a = [] [a.append(sum(a[k] & n == 0 for k in range(n))) for n in range(74)] print(a) # Michael S. Branicky, Feb 24 2022
Formula
a(2^k) = 2^k.
Comments