A084708
Number of set partitions up to rotations and reflections.
Original entry on oeis.org
1, 2, 3, 7, 12, 37, 93, 354, 1350, 6351, 31950, 179307, 1071265, 6845581, 46162583, 327731950, 2437753740, 18948599220, 153498350745, 1293123243928, 11306475314467, 102425554299516, 959826755336242, 9290811905391501
Offset: 1
SetPartitions[6] is the first to decompose differently from A084423: 4 cycles of length 1, 2 of 2, 9 of 3, 16 of 6, 6 of 12.
a(7) = 1 + A056357(7) + A056358(7) + A056359(7) + A056360(7) + A056361(7) + 1 = 1 + 8 + 31 + 33 + 16 + 3 + 1 = 93.
- Michael De Vlieger, Table of n, a(n) for n = 1..577
- Colin Adams, Chaim Even-Zohar, Jonah Greenberg, Reuben Kaufman, David Lee, Darin Li, Dustin Ping, Theodore Sandstrom, and Xiwen Wang, Virtual Multicrossings and Petal Diagrams for Virtual Knots and Links, arXiv:2103.08314 [math.GT], 2021.
- Tilman Piesk, Partition related number triangles
- N. J. A. Sloane, Generating functions [From _Wouter Meeussen_, Dec 06 2008]
-
<A080107 *); Table[{Length[ # ], First[ # ]}&/@ Split[Sort[Length/@Split[Sort[First[Sort[Flatten[ {#, Map[Sort, (#/. i_Integer:>w+1-i), 2]}& @(NestList[Sort[Sort/@(#/. i_Integer :> Mod[i+1, w, 1])]&, #, w]), 1]]]&/@SetPartitions[w]]]]], {w, 1, 10}]
u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; a[n_]:=1/n*Plus@@(EulerPhi[ # ]u[Quotient[n,# ],# ]&/@Divisors[n]); Table[a[n]/2+If[EvenQ[n],u[n/2,2],Sum[Binomial[n/2-1/2,k] u[k,2], {k,0,n/2-1/2}]]/2,{n,40}] (* Wouter Meeussen, Dec 06 2008 *)
A306417
Number of self-conjugate set partitions of {1, ..., n}.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 7, 7, 46, 39, 321
Offset: 0
The a(3) = 1 through a(7) = 7 self-conjugate set partitions:
{{12}{3}} {{13}{24}} {{123}{4}{5}} {{135}{246}} {{13}{246}{57}}
{{13}{2}{45}} {{124}{35}{6}} {{15}{246}{37}}
{{13}{25}{46}} {{1234}{5}{6}{7}}
{{14}{2}{356}} {{124}{3}{56}{7}}
{{14}{236}{5}} {{134}{2}{5}{67}}
{{14}{25}{36}} {{14}{2}{3}{567}}
{{145}{26}{3}} {{14}{23}{57}{6}}
Cf.
A000110,
A000126,
A000296,
A001610,
A032032,
A052841,
A080107,
A169985,
A306416,
A324011,
A324012.
A324012
Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0
The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies:
{{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}}
{{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}}
{{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}}
{{147}{258}{36}} {{168}{249}{357}}
{{157}{248}{36}} {{13}{258}{46}{79}}
{{13}{24}{57}{68}} {{14}{258}{37}{69}}
{{13}{25}{47}{68}} {{14}{28}{357}{69}}
{{14}{26}{37}{58}} {{16}{258}{37}{49}}
{{14}{27}{36}{58}} {{16}{28}{357}{49}}
{{15}{26}{37}{48}} {{17}{258}{39}{46}}
{{15}{27}{36}{48}} {{18}{29}{357}{46}}
{{16}{24}{38}{57}}
{{16}{25}{38}{47}}
{{17}{28}{35}{46}}
Cf.
A000110,
A000126,
A000296,
A001610,
A080107,
A169985,
A261139,
A306417 (all self-conjugate set partitions),
A324011 (self-complementarity not required),
A324013 (adjacencies allowed),
A324014 (singletons allowed),
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A324014
Number of self-complementary set partitions of {1, ..., n} with no cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 9, 16, 43, 89, 250, 571, 1639
Offset: 0
The a(3) = 1 through a(6) = 9 self-complementary set partitions with no cyclical adjacencies:
{{1}{2}{3}} {{13}{24}} {{14}{25}{3}} {{135}{246}}
{{1}{2}{3}{4}} {{1}{24}{3}{5}} {{13}{25}{46}}
{{1}{2}{3}{4}{5}} {{14}{25}{36}}
{{1}{24}{35}{6}}
{{13}{2}{46}{5}}
{{14}{2}{36}{5}}
{{15}{26}{3}{4}}
{{1}{25}{3}{4}{6}}
{{1}{2}{3}{4}{5}{6}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A320749
Number of chiral pairs of color patterns (set partitions) in a cycle of length n.
Original entry on oeis.org
0, 0, 0, 0, 0, 6, 34, 190, 1011, 5352, 29740, 172466, 1055232, 6793791, 46034940, 327303819, 2436650368, 18944771253, 153488081102, 1293086505784, 11306373089104, 102425178180769, 959825673145688, 9290807818971900, 92771800581171418, 954447025978145744, 10105871186441842623, 110009631951698573068, 1229996584263621368224, 14112483571723367245825, 166021918475962174194914, 2001010469483653602192695
Offset: 1
For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
Columns of
A320742 converge to this as k increases.
-
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#]&], Boole[n==0 && k==0]]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]]
Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j,n}], {n,40}]
A320937
Number of chiral pairs of color patterns (set partitions) for a row of length n.
Original entry on oeis.org
0, 0, 1, 4, 20, 86, 409, 1988, 10404, 57488, 338180, 2103378, 13814202, 95423766, 691415451, 5239857008, 41431883216, 341036489096, 2916365967707, 25862060748614, 237434856965694, 2253357681164288, 22076002386446896, 222979432604192844, 2319295160051570620
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
Limit as k increases of column k of array
A320751.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,n}]/2,{n,40}]
-
\\ Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
seq(n)={my(A=Ach(n)); vector(n, n, sum(k=1, n, stirling(n,k,2) - A[n,k])/2)} \\ Andrew Howroyd, Sep 18 2019
A324013
Number of self-complementary set partitions of {1, ..., n} with no singletons.
Original entry on oeis.org
1, 0, 1, 1, 4, 3, 15, 16, 75, 89, 428, 571, 2781, 4060, 20093, 31697, 159340, 268791, 1372163, 2455804, 12725447, 24012697, 126238060, 249880687, 1332071241, 2754348360, 14881206473, 32029000641, 175297058228, 391548016475, 2169832010759
Offset: 0
The a(3) = 1 through a(6) = 15 self-complementary set partitions with no singletons:
{{123}} {{1234}} {{12345}} {{123456}}
{{12}{34}} {{135}{24}} {{123}{456}}
{{13}{24}} {{15}{234}} {{124}{356}}
{{14}{23}} {{1256}{34}}
{{1346}{25}}
{{135}{246}}
{{145}{236}}
{{16}{2345}}
{{12}{34}{56}}
{{13}{25}{46}}
{{14}{25}{36}}
{{15}{26}{34}}
{{16}{23}{45}}
{{16}{24}{35}}
{{16}{25}{34}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0]&]//Length,{n,0,10}]
-
seq(n)={my(x=x+O(x*x^(n\2)), p=exp((exp(2*x)-3)/2-x+exp(x)), q=(exp(x)-1)*p); vector(n+1, n, my(c=(n-1)\2); c!*polcoef(if(n%2, p, q), c))} \\ Andrew Howroyd, Feb 16 2022
Comments