A341749
Numbers k such that gcd(k, phi(k)) > log(log(k)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 93, 94, 96
Offset: 1
16 is a term since gcd(16, phi(16)) = gcd(16, 8) = 8 > log(log(16)) = 1.0197...
17 is not a term since gcd(17, phi(17)) = gcd(17, 16) = 1 < log(log(17)) = 1.0414...
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Erdős, Florian Luca and Carl Pomerance, On the proportion of numbers coprime to a given integer, in: J.-M. De Koninck, A. Granville and F. Luca (eds.), Anatomy of Integers, AMS, 2008, pp. 47-64.
- Wikipedia, Dickman function.
-
Select[Range[100], GCD[#, EulerPhi[#]] > Log[Log[#]] &]
-
isok(k) = (k==1) || (gcd(k, eulerphi(k)) > log(log(k))); \\ Michel Marcus, Feb 19 2021
A080785
Least p-smooth number not less n, where p is the smallest prime factor of n.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 7, 8, 9, 16, 11, 16, 13, 16, 16, 16, 17, 32, 19, 32, 24, 32, 23, 32, 25, 32, 27, 32, 29, 32, 31, 32, 36, 64, 36, 64, 37, 64, 48, 64, 41, 64, 43, 64, 48, 64, 47, 64, 49, 64, 54, 64, 53, 64, 60, 64, 64, 64, 59, 64, 61, 64, 64, 64, 72, 128, 67, 128, 72, 128, 71
Offset: 1
-
a[n_] := Module[{p, k}, p = FactorInteger[n][[1, 1]]; For[k = n, True, k++, If[FactorInteger[k][[-1, 1]] <= p, Return[k]]]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2021 *)
A144913
Integers which are the product of even powers of primes up to 13.
Original entry on oeis.org
4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1225, 1296, 1521, 1600, 1764, 1936, 2025, 2304, 2401, 2500, 2704, 2916, 3025, 3136, 3600, 3969, 4096, 4225, 4356, 4900, 5184, 5625
Offset: 1
-
Select[ Range[75]^2, (fi = FactorInteger[#]; Max[ fi[[All, 1]] ] <= 13 && And @@ EvenQ /@ fi[[All, 2]]) &] (* Jean-François Alcover, Oct 10 2012 *)
eppQ[n_]:=Module[{fi=FactorInteger[n]},Max[fi[[All,1]]]<=13&&AllTrue[ fi[[All,2]],EvenQ]]; Select[Range[6000],eppQ] (* Harvey P. Dale, Dec 26 2021 *)
-
is(n)=if(issquare(n,&n), my(f=factor(n)[,1]); #f && f[#f]<14, 0) \\ Charles R Greathouse IV, Jun 17 2013
A373944
Lexicographically earliest sequence of distinct positive integers such that for A(k) <= n < A(k+1); rad(Product_{i = 1..n} a(i)) = A002110(k), where A = A002110, rad = A007947, k >= 0, n >= 1.
Original entry on oeis.org
1, 2, 4, 8, 16, 3, 6, 9, 12, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 75, 80, 90, 100, 120, 125, 135, 150, 160, 180, 200, 225, 240, 250, 270, 300, 320, 324, 360, 375, 384, 400
Offset: 1
k = 0 --> A(0) <= n < A(1) --> 1 <= n < 2 --> n = 1 --> a(1) = 1 since rad(1) = 1 = A(0).
k = 1 --> A(1) <= n < A(2) --> 2 <= n < 6 --> n = 2,3,4,5 --> a(2,3,4,5) = 2,4,8,16 (the first 4 terms of A000079, excluding 1).
k = 2 --> 6 <= n < 30 --> n = 6,7,8,9,...,29 --> a(6,7,8,9...,29) = 3,6,9,12,...,288 (the first 24 terms of A003586 excluding all above).
k = 3 --> 30 <= n < 210 --> n = 30,31,32,...,209 --> a(30,31,32,...,209) = 5,10,15,...,19200 (the first 180 terms of A051037 excluding all above).
Sequence can be presented as an irregular table T(n,k), in which the n-th row commences A008578(n); n >= 1, and T(n,k) is the k-th prime(n)-smooth number which has not appeared earlier.
Table starts:
1;
2,4,8,16;
3,6,9,12,18,24,27,32,...,288;
5,10,15,20,25,30,40,45,50,60,...,19200;
7,14,21,28,...,13829760;
Cf.
A000040,
A002110,
A002473,
A003586,
A007947,
A051037,
A051038,
A080197,
A080681,
A080682,
A080683.
-
(* First, load function f from A162306 *)
P = m = 1; Flatten@ Join[{{1}}, Reap[Do[P *= Prime[i]; (Sow@ Select[#, Nand[# <= m, FactorInteger[#][[-1, 1]] < Prime[i]] &]; m = #[[-1]]) &@ f[P, P^4][[;; P*Prime[i + 1] - 1]], {i, 3}] ][[-1, 1]]] (* Michael De Vlieger, Jun 24 2024 *)
A277620
Positive integers that are composed of prime factors 2,3,5 and 11.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 24, 25, 27, 30, 32, 33, 36, 40, 44, 45, 48, 50, 54, 55, 60, 64, 66, 72, 75, 80, 81, 88, 90, 96, 99, 100, 108, 110, 120, 121, 125, 128, 132, 135, 144, 150, 160, 162, 165, 176, 180, 192, 198, 200, 216, 220
Offset: 1
A363794
a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).
Original entry on oeis.org
16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 27886608750, 970453984500, 37905932634570
Offset: 1
a(1) = 16 since r(2^4) = 5 and r(6) = 5; numbers in row 16 of A162306 are its divisors {1, 2, 4, 8, 16}, while row 6 of A162306 is {1, 2, 3, 4, 6}.
a(2) = 72 = A003586(18) since r(72) = r(30) = 18. 72 is the 8th term in A003586 that is not in A000961.
a(3) = 540 since r(540) = 69 which exceeds r(210) = 68.
a(4) = 6300 since r(6300) = 290 which exceeds r(2310) = 283, etc.
Table showing the relationship of a(n) to r(P(n)) = A363061(n), with p(n) = prime(n), P(n+1) = A002110(n+1), r(a(n)) = A010846(a(n)), and j the index such that S(r(a(n))) = T(j) = a(n). a(n) = m*P(n).
n p(n) P(n+1) a(n) r(P(n)) r(a(n)) j m
--------------------------------------------------------------
1 2 6 16 5 5 4 8
2 3 30 72 18 18 8 12
3 5 210 540 68 69 13 18
4 7 2310 6300 283 290 22 30
5 11 30030 92400 1161 1165 29 40
6 13 510510 1681680 4843 4848 42 56
7 17 9699690 36756720 19985 19994 53 72
8 19 223092870 921470550 83074 83435 68 95
9 23 6469693230 27886608750 349670 351047 89 125
10 29 200560490130 970453984500 1456458 1457926 107 150
Cf.
A000079,
A000961,
A002110,
A002473,
A003586,
A007947,
A010846,
A051037,
A051038,
A080197,
A080681,
A080682,
A080683,
A162306,
A363061.
-
nn = 6; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := FactorInteger[x][[-1, 1]]; S = Array[Product[Prime[i], {i, #}] &, nn + 1]; Table[Set[{p, q}, Prime[n + {0, 1}]]; r = Count[Range[S[[n + 1]]], _?(f[#] <= q &)]; c = k = 1; While[Or[c < r, rad[k] != S[[n]]], If[f[k] <= p, c++]; k++]; k, {n, nn}]
Comments