A302182
Number of 3D walks of type abc.
Original entry on oeis.org
1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def row(n: int) -> list[int]:
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024
A302184
Number of 3D walks of type abe.
Original entry on oeis.org
1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A126120,
A138547,
A145847,
A145867,
A150500,
A202814.
-
a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Nov 30 2024
-
from math import comb as binomial
def a(n: int):
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024
A349001
The number of Lyndon words of size n from an alphabet of 5 letters and 1st and 2nd letter of the alphabet with equal frequency in the words.
Original entry on oeis.org
1, 3, 4, 14, 46, 174, 656, 2640, 10790, 45340, 193600, 839820, 3686424, 16353924, 73187456, 330052646, 1498335650, 6841899606, 31404443032, 144814450188, 670552118244, 3116578216310, 14534401932712, 67992210407514, 318969964124256, 1500268062754830
Offset: 0
Examples for the alphabet {0,1,2,3,4}:
a(0)=1 counts (), the empty word.
a(3)=14 counts (021) (031) (041) (012) (013) (223) (233) (243) (014) (224) (234) (334) (244) (344), words of length 3 where the letters 0 and the 1 occur both either not or once.
a(4)=46 counts (0011) (0221) (0321) (0421) (0231) (0331) (0431) (0241) (0341) (0441) (0212) (0312) (0412) (0122) (0132) (0142) (0213) (0313) (0413) (0123) (2223) (0133) (2233) (2333) (2433) (0143) (2243) (2343) (2443) (0214) (0314) (0414) (0124) (2224) (2324) (0134) (2234) (2334) (3334) (2434) (0144) (2244) (2344) (3344) (2444) (3444).
-
a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, binomial(d,k)*binomial(2*k,k)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023
A302178
The number of 3D walks of semilength n in a quadrant returning to the origin.
Original entry on oeis.org
1, 4, 40, 570, 9898, 195216, 4209084, 96941130, 2349133930, 59272544760, 1545550116240, 41416083787260, 1135679731004700, 31760915181412800, 903492759037272480, 26086451983000501410, 763124703525758894490, 22585374873810849150600, 675419388009799152812400
Offset: 0
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. The sequence is type aab in Table 3.
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
A302179
The number of 3D walks of length n in an octant returning to axis of origin.
Original entry on oeis.org
1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
f(n) = binomial(n, floor(n/2)); \\ A001405
a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020
A302183
Number of 3D n-step walks of type abd.
Original entry on oeis.org
1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
def a(n):
return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024
A302185
Number of 3D n-step walks of type acc.
Original entry on oeis.org
1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
C:= n-> binomial(2*n, n)/(n+1):
a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
(8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
(80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
(10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
-
b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
c[n_] := Binomial[2*n, n]/(n+1);
a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def a(n):
return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024
A302186
Number of 3D walks of type ace.
Original entry on oeis.org
1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867 (number of 3D walks of type acd),
A150500,
A202814.
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def row(n: int) -> list[int]:
return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024
A302187
Number of 3D walks of type bcc.
Original entry on oeis.org
1, 2, 8, 30, 138, 620, 3060, 14910, 76650, 390852, 2063376, 10832052, 58264668, 312123240, 1702423008, 9256786110, 51036229530, 280696824980, 1560925457520, 8663089672380, 48512836025940, 271229902496280, 1527733861191720, 8593482390429300, 48642125421855420, 275014629509319000
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def a(n):
return sum(binomial(n, k)*binomial(k, k//2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 25 2024
A302188
Number of 3D walks of type bce.
Original entry on oeis.org
1, 3, 12, 53, 252, 1252, 6416, 33609, 178996, 965660, 5263728, 28936404, 160204336, 892313424, 4995832640, 28096475977, 158638993476, 898844200524, 5108695394096, 29117034808980, 166370716319088, 952789631705104, 5467881256289856, 31438798094242244, 181079794531199440, 1044651995141484912
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def a(n):
return sum(binomial(n, k)*sum(binomial(k, j)*binomial(j, j//2)**2 for j in range(k+1)) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 28 2024
Comments