cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A205813 Triangle T(n,k), read by rows, given by (0, 2, 1, 1, 1, 1, 1, 1, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 20, 16, 6, 1, 0, 70, 64, 30, 8, 1, 0, 252, 256, 140, 48, 10, 1, 0, 924, 1024, 630, 256, 70, 12, 1, 0, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 0, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 01 2012

Keywords

Comments

Riordan array (1, x/sqrt(1-4*x)). Inverse of Riordan array (1, x*exp(arcsinh(-2*x))).
T is the convolution triangle of the shifted central binomial coefficients binomial(2*(n-1), n-1). - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,   1;
  0,   6,   4,   1;
  0,  20,  16,   6,   1;
  0,  70,  64,  30,   8,   1;
  0, 252, 256, 140,  48,  10,   1;
		

Crossrefs

Cf. A054335 and columns listed there.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022

Formula

T(n,n) = 1 = A000012(n); T(n+1,n) = 2*n = A005843(n); T(n+2,n) = 2*n*(n+2) = A054000(n+1).
Sum_{k=0..n} T(n,k)*x^k = -A081696(n-1), A000007(n), A026671(n-1), A084868(n) for x = -1, 0, 1, 2 respectively.
G.f.: sqrt(1-4*x)/(sqrt(1-4*x)-y*x).
Sum_{k=0..n} T(n,k)*A090192(k) = A000108(n), A000108 = Catalan numbers.

A081698 Expansion of (1 - sqrt( 1 - 4*x*sqrt( 1 + 4*x )) )/( 2*x ).

Original entry on oeis.org

1, 3, 4, 21, 56, 282, 984, 4813, 19280, 93150, 403672, 1945954, 8845360, 42766292, 200419504, 974134461, 4659558048, 22785183670, 110564976792, 543935554390, 2667398588272, 13196971915628, 65238895435792, 324431740601618, 1614044041864800, 8063536826420460
Offset: 0

Views

Author

Emanuele Munarini, Apr 02 2003

Keywords

Crossrefs

Cf. A081696.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 3, 4, 21][n+1],
          (2*n*(n+1)*(3-2*n) *a(n-1) +4*n*(2*n-1)*(2*n-3) *a(n-2)
           +8*(2*n-3)*(8*n^2-16*n-15) *a(n-3)
           +16*(4*n-15)*(4*n-9)*(n+1) *a(n-4)) /(n^2*(n+1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 13 2013
  • Mathematica
    a[n_] := Sum[Binomial[(k+1)/2, n-k]*Binomial[2*k, k]*4^(n-k)/(k+1), {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)
    CoefficientList[Series[(1-Sqrt[1-4x Sqrt[1+4x]])/(2x),{x,0,30}],x] (* Harvey P. Dale, Oct 30 2017 *)

Formula

G.f.: (1-sqrt(1-4*x*sqrt(1+4*x)))/(2*x).
a(n) = sum(k=0..n, (binomial((k+1)/2,n-k)*binomial(2*k,k)*4^(n-k))/(k+1)). [Vladimir Kruchinin, Mar 13 2013]
D-finite with recurrence: n*(n+1)*a(n) +2*n*(5*n-7)*a(n-1) +4*(2*n^2-13*n+12)*a(n-2) -8*(2*n-3)*(14*n-37)*a(n-3) +16*(-64*n^2+392*n-573)*a(n-4) -96*(4*n-13)*(4*n-19)*a(n-5)=0. - R. J. Mathar, Jan 23 2020

A152229 Eigentriangle, row sums = A000984.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 9, 3, 2, 6, 29, 9, 6, 6, 20, 97, 29, 18, 18, 20, 70, 333, 97, 58, 54, 60, 70, 252, 1165, 333, 194, 174, 180, 210, 252, 924, 4135, 1165, 666, 582, 580, 630, 756, 924, 3432, 14845, 4135, 2330, 1998, 1940, 2030, 2268, 2772, 3432, 12870
Offset: 0

Views

Author

Gary W. Adamson, Nov 29 2008

Keywords

Comments

Row sums = A000984: (1, 2, 6, 20, 70, 252,...), left border = A081696.
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
3, 1, 2;
9, 3, 2, 6;
29, 9, 6, 6, 20;
97, 29, 18, 18, 20, 70;
333, 97, 58, 54, 60, 70, 252;
1165, 333, 194, 174, 180, 210, 252, 924;
4135, 1165, 666, 582, 580, 630, 756, 924, 3432;
14845, 4135, 2330, 1998, 1940, 2030, 2268, 2772, 3432, 12870;
...
Row 3 = (9, 3, 2, 6) = termwise products of (9, 3, 1, 1) and (1, 1, 2, 6).
		

Crossrefs

Formula

Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A081696: (1, 1, 3, 9, 29, 97, 333, 1165,...) in every column; and Q = a matrix with A000984 as the main diagonal (prefaced with a 1): (1, 1, 2, 6, 20, 70, 252,...) and the rest zeros.

A155788 Renewal array for 1/(x+sqrt(1-4x)).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 9, 7, 3, 1, 29, 24, 12, 4, 1, 97, 85, 46, 18, 5, 1, 333, 306, 177, 76, 25, 6, 1, 1165, 1115, 681, 315, 115, 33, 7, 1, 4135, 4100, 2622, 1288, 510, 164, 42, 8, 1, 14845, 15185, 10104, 5220, 2206, 774, 224, 52, 9, 1
Offset: 0

Views

Author

Paul Barry, Jan 27 2009

Keywords

Comments

First column is A081696. Row sums are A000984.
Contribution from Paul Barry, Jan 27 2009: (Start)
First column of A155788.
In general, the image of the sequence with g.f. 1/(1-ax-bx^2) under (1,xc(x)) has g.f.
1/(1-ax-(a+b)x/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction). (End)

Examples

			Triangle begins
1,
1, 1,
3, 2, 1,
9, 7, 3, 1,
29, 24, 12, 4, 1,
97, 85, 46, 18, 5, 1,
333, 306, 177, 76, 25, 6, 1
		

Formula

Riordan array (1/(x+sqrt(1-4x)),x/(x+sqrt(1-4x));
G.f.: 1/(1-x-xy-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction).
G.f: 1/(1-x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction). [From Paul Barry, Jan 27 2009]

A188513 Riordan matrix (1/(x+sqrt(1-4x)),(1-sqrt(1-4x))/(2(x+sqrt(1-4x)))).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 11, 5, 1, 29, 40, 23, 7, 1, 97, 147, 99, 39, 9, 1, 333, 544, 413, 194, 59, 11, 1, 1165, 2025, 1691, 907, 333, 83, 13, 1, 4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1, 14845, 28455, 27464, 17856, 8453, 2979, 775, 143, 17, 1, 53791, 107277, 109631, 76718, 39851, 15804, 4797, 1094, 179, 19, 1
Offset: 0

Views

Author

Emanuele Munarini, Apr 02 2011

Keywords

Comments

First column = sequence A081696
Row sums = sequence A101850

Examples

			Triangle begins:
  1
  1, 1
  3, 3, 1
  9, 11, 5, 1
  29, 40, 23, 7, 1
  97, 147, 99, 39, 9, 1
  333, 544, 413, 194, 59, 11, 1
  1165, 2025, 1691, 907, 333, 83, 13, 1
  4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[i+k,k]Binomial[2n-i,n+k+i](2k+3i+1)/(n+k+i+1),{i,0,Floor[(n-k)/2]}],{n,0,10},{k,0,n}]]
  • Maxima
    create_list(sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1),i,0,floor((n-k)/2)),n,0,10,k,0,n);

Formula

T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x))))^k/(x+sqrt(1-4*x)).
T(n,k) = [x^(n-k)] (1-2*x)/((1-x)^(n+1)*(1-x-x^2)^(k+1)).
T(n,k) = sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1), i=0..floor((n-k)/2)).

A189675 Composition of Catalan and Fibonacci numbers.

Original entry on oeis.org

1, -1, 2, 2, -4, 3, -5, 10, -9, 5, 14, -28, 27, -20, 8, -42, 84, -84, 70, -40, 13, 132, -264, 270, -240, 160, -78, 21, -429, 858, -891, 825, -600, 351, -147, 34, 1430, -2860, 3003, -2860, 2200, -1430, 735, -272, 55, -4862, 9724, -10296, 10010, -8008, 5577, -3234, 1496, -495, 89, 16796, -33592, 35802, -35360, 29120, -21294, 13377, -7072, 2970, -890, 144, -58786, 117572, -125970, 125970, -106080, 80444, -53508, 30940, -15015, 5785, -1584, 233
Offset: 1

Views

Author

Wouter Meeussen, Apr 25 2011

Keywords

Comments

Row sums equal 1 (proof by Bill Gosper, Apr 17 2011). Row sums of absolute terms equal A081696.

Examples

			Table starts
   1,
  -1,  2,
   2, -4,  3,
  -5, 10, -9, 5,
		

References

  • Email of R. W. Gosper on the math-fun mailing list, Apr 17 2011.

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(k + n) k/(2n - k) Binomial[2n - k, n - k] Fibonacci[k + 1], {n, 12}, {k, n}]

A100240 G.f. A(x) satisfies: 4^n/2 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: ((4+z)^n + z^n)/2 = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.

Original entry on oeis.org

1, 1, 2, 2, 0, -4, -6, 2, 22, 30, -26, -154, -172, 288, 1190, 990, -3040, -9620, -4970, 31350, 79120, 12580, -318210, -649610, 174150, 3185686, 5233514, -4273078, -31452228, -40495600, 64593386, 305819154, 290278982, -835918098, -2921409370, -1771072346, 9995237616, 27317409988
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2004

Keywords

Examples

			From the table of powers of A(x), we see that
4^n/2 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,1],2,2,0,-4,-6,2,22,30,-26,...
A^2=[1,2,5],8,8,0,-16,-24,8,88,120,...
A^3=[1,3,9,19],30,30,2,-54,-84,20,288,...
A^4=[1,4,14,36,73],112,112,16,-176,-288,32,...
A^5=[1,5,20,60,145,281],420,420,90,-570,-988,...
A^6=[1,6,27,92,255,582,1085],1584,1584,440,-1848,...
A^7=[1,7,35,133,413,1071,2331,4201],6006,6006,2002,...
A^8=[1,8,44,184,630,1816,4460,9320,16305],22880,22880,...
the main diagonal of which is:
[x^n]A(x)^(n+1) = (n+1)*A081696(n) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*x + Sqrt[1 - 2*x + 5*x^2], {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 07 2021 *)
  • PARI
    a(n)=if(n==0,1,(4^n/2-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
    
  • PARI
    a(n)=polcoeff(2*x+sqrt(1-2*x+5*x^2+x^2*O(x^n)),n)

Formula

G.f.: A(x) = 2*x+sqrt(1-2*x+5*x^2).
Recurrence: n*a(n) = (2*n-3)*a(n-1) - 5*(n-3)*a(n-2). - Vaclav Kotesovec, Feb 07 2021
Previous Showing 11-17 of 17 results.