cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A344038 Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= 10^n).

Original entry on oeis.org

1, 983583, 983029267047, 982960635742968103, 982953384128772770413831, 982952672223441253533233827367, 982952600027678075050509511271466303, 982952593055042000417993486008754893529583, 982952592342881094406730790044111038427637071855
Offset: 0

Views

Author

Karl-Heinz Hofmann, May 07 2021

Keywords

Crossrefs

Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • PARI
    a(n)={sum(k=1, 10^n+1, moebius(k)*(10^n\k)^6)} \\ Andrew Howroyd, May 08 2021
  • Python
    from labmath import mobius
    def A344038(n): return sum(mobius(k)*(10**n//k)**6 for k in range(1, 10**n+1))
    

Formula

Lim_{n->infinity} a(n)/10^(6*n) = 1/zeta(6) = A343359 = 945/Pi^4.
a(n) = A343978(10^n).

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A332468 a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.

Original entry on oeis.org

1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
    
  • Mathematica
    Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
    b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
  • PARI
    a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A344527_T(n,k):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A344527_T(k1,k)
            j, k1 = j2, n//j2
        return n*(n**(k-1)-1)-c+j
    def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023

Formula

a(n) ~ n^n. - Vaclav Kotesovec, May 28 2021

A344597 a(n) = Sum_{k=1..n} mu(k) * (floor(n/k)^4 - floor((n-1)/k)^4).

Original entry on oeis.org

1, 14, 64, 160, 368, 592, 1104, 1520, 2400, 3056, 4640, 5264, 7824, 8736, 11776, 13216, 17984, 18384, 25344, 26080, 33312, 35120, 45584, 44320, 58480, 58512, 72000, 73200, 92624, 86848, 113520, 110144, 132640, 132416, 162816, 152112, 194544, 185616, 220416
Offset: 1

Views

Author

Seiichi Manyama, May 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^4), {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 24 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*((n\k)^4-((n-1)\k)^4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^4))
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j
    def A344597(n): return A082540(n)-A082540(n-1) # Chai Wah Wu, May 09 2025

Formula

Sum_{k=1..n} a(k) * floor(n/k) = n^4.
Sum_{k=1..n} a(k) = A082540(n).
G.f.: Sum_{k >= 1} mu(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^4.

A101467 Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10].

Original entry on oeis.org

10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399
Offset: 1

Views

Author

Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005

Keywords

Comments

Number of elements of {1,...,10}^n with gcd 1. - Robert Israel, Nov 28 2014

Examples

			For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10).
		

Crossrefs

Cf. A018805 (2 terms), A071778 (3 terms), A082540 (4 terms), A082544 (5 terms).

Programs

  • Maple
    1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014
  • PARI
    Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014

Formula

a(1) = 10; for n>1, a(n) = 10^n - 5^n - 3^n - 2^n + 1.
G.f.: x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10) / ((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Nov 28 2014
a(n+4) = -300*a(n)+340*a(n+1)-131*a(n+2)+20*a(n+3)+72 for n >= 2. - Robert Israel, Dec 02 2014
a(n) = 21*a(n-1) - 151*a(n-2) + 471*a(n-3) - 640*a(n-4) + 300*a(n-5) for n > 6. - Chai Wah Wu, Apr 15 2021

A383783 a(n) = Sum_{k=1..2^n} mu(k) * (floor(2^n/k)^4 - floor((2^n-1)/k)^4).

Original entry on oeis.org

1, 14, 160, 1520, 13216, 110144, 899200, 7266560, 58425856, 468583424, 3753379840, 30045900800, 240442679296, 1923843375104, 15391954862080, 123140470538240, 985143091265536, 7881222038749184, 63050085546065920, 504401921315962880, 4035220318323736576
Offset: 0

Views

Author

Chai Wah Wu, May 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[MoebiusMu[k]*(Floor[2^n/k]^4-Floor[(2^n-1)/k]^4),{k,2^n}]; Array[a,21,0] (* James C. McMahon, May 10 2025 *)
  • PARI
    a(n) = sum(k=1, 2^n, moebius(k) * ((2^n\k)^4 - ((2^n-1)\k)^4)); \\ Michel Marcus, May 10 2025
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j
    def A383783(n): return A082540(m:=1<A082540(m-1)
    

Formula

a(n) = A344597(2^n) = A082540(2^n) - A082540(2^n-1).
Previous Showing 11-15 of 15 results.