cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A359593 Multiplicative with a(p^e) = 1 if p divides e, p^e otherwise.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 8, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 24, 25, 26, 1, 7, 29, 30, 31, 32, 33, 34, 35, 9, 37, 38, 39, 40, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 56, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 72, 73, 74, 75, 19, 77, 78, 79, 5, 81, 82, 83, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

Each term a(n) is a multiple of both A083346(n) and A327938(n).

Crossrefs

Cf. A072873 (positions of 1's), A359594.

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 09 2023 *)
  • PARI
    A359593(n) = { my(f = factor(n)); prod(k=1, #f~, f[k, 1]^(f[k,2]*!!(f[k, 2]%f[k, 1]))); };
    
  • Python
    from math import prod
    from sympy import factorint
    def A359593(n): return prod(p**e for p, e in factorint(n).items() if e%p) # Chai Wah Wu, Jan 10 2023

Formula

a(n) = n / A359594(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - p^(p-1)*(p-1)/(p^(2*p)-1)) = 0.4225104173... . - Amiram Eldar, Jan 11 2023

A188901 Integers in the sequences (arithmetic derivative of k) divided by k.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 3, 2, 5, 4, 3, 1, 6, 5, 4, 2, 7, 3, 6, 5, 3, 8, 4, 2, 7, 6, 4, 9, 5, 3, 8, 4, 7, 5, 1, 10, 6, 4, 9, 5, 3, 8, 6, 2, 11, 7, 5, 10, 6, 4, 2, 9, 7, 3, 5, 12, 8, 6, 2, 11, 7, 5, 3, 10, 8, 4, 6, 4, 13, 9, 7, 3, 12, 8, 6, 4, 11
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Comments

Integers in the sequence (k'/k) = A003415(k)/k. See A072873 for the values of k where k'/k is an integer.

Examples

			1' = 0, 0/1 = 0 -> a(1) = 0;
4' = 4 ,4/4 = 1 -> a(2) = 1;
16' = 32, 32/16 = 2 -> a(3) = 2.
		

Crossrefs

A267143 Primes q such that Sum_(q-1; i=1..m) e(i)/p(i) is an integer k, where the prime factorization of n is Product_(n; i=1..m) p(i)^e(i).

Original entry on oeis.org

5, 17, 109, 257, 433, 2917, 65537, 746497, 1350001, 1769473, 3294173, 5038849, 5400001, 8503057, 21600001, 28311553, 57395629, 113246209, 145800001, 210827009, 984150001, 1811939329, 2500000001, 3936600001, 4218750001, 5692329217, 9331200001, 16875000001
Offset: 1

Views

Author

Jaroslav Krizek, Jan 11 2016

Keywords

Comments

Primes from the set {A072873(n) + 1: n>1}.
Fermat primes > 3 from A019434 are in the sequence.
Corresponding values of k: 1, 2, 2, 4, 3, 3, 8, 7, 4, 9, 2, 7, 5, ...

Examples

			Prime 433 is a term because 432 = 2^4 * 3^3 and 4/2 + 3/3 = 3 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [3..10^8] | IsPrime(n) and Denominator(&+[p[2]/p[1]: p in Factorization(n-1)]) eq 1];
    
  • PARI
    isA072873(n)=my(f=factor(n)); for(i=1, #f~, if(f[i, 2]%f[i, 1], return(0))); 1
    lista(nn) = {forprime(p=2, nn, if (isA072873(p-1), print1(p, ", ")););} \\ Michel Marcus, Jan 21 2016

A381959 Denominator of the sum of the reciprocals of the indices of distinct prime factors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 6, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 2, 12, 8, 3, 3, 13, 4, 14, 5, 6, 9, 15, 2, 4, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 2, 21, 12, 6, 8, 20, 3, 22, 3, 2, 13, 23, 4, 21, 14, 5, 5, 24, 6, 12, 9, 22, 15, 24
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2025

Keywords

Examples

			0, 1, 1/2, 1, 1/3, 3/2, 1/4, 1, 1/2, 4/3, 1/5, 3/2, 1/6, 5/4, 5/6, 1, 1/7, 3/2, 1/8, 4/3, ...
		

Crossrefs

Cf. A000720, A007947, A066328, A083346, A318574, A381958 (numerators).

Programs

  • Mathematica
    Join[{1}, Table[Plus @@ (1/PrimePi[#[[1]]] & /@ FactorInteger[n]), {n, 2, 95}] // Denominator]
    nmax = 95; CoefficientList[Series[Sum[x^Prime[k]/(k (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = my(f=factor(n)); denominator(sum(k=1, #f~, 1/primepi(f[k,1]))); \\ Michel Marcus, Mar 11 2025

Formula

If n = Product (p_j^k_j) then a(n) = denominator of Sum (1/pi(p_j)).
G.f. for fractions: Sum_{k>=1} x^prime(k) / (k*(1 - x^prime(k))).
Previous Showing 11-14 of 14 results.