A103478 Positive integers k for which 1 + 5*2^(k+2) divides the Fermat number 1 + 2^2^k.
5, 23, 73, 125, 1945, 23471
Offset: 1
Examples
a(1)=5 because 5 is the smallest positive integer k for which 1 + 5*2^(k+2) divides the Fermat number 1 + 2^2^k.
Links
- Wilfrid Keller, Prime factors k*2^n + 1 of Fermat numbers F_m
Programs
-
Mathematica
Select[Range[1, 2000], Mod[1 + PowerMod[2, 2^#, 1 + 5*2^(# + 2)], 1 + 5*2^(# + 2)] == 0 &] (* Julien Kluge, Jul 08 2016 *)
-
PARI
isok(n) = Mod(2, 1+5*2^(n+2))^(2^n) + 1 == 0; \\ Michel Marcus, Apr 29 2016
Comments