cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A084613 a(n) = sum of absolute values of coefficients of (1 + x - 2*x^2)^n.

Original entry on oeis.org

1, 4, 14, 44, 124, 394, 1418, 4706, 14322, 40712, 135878, 468934, 1513650, 4502864, 13421408, 45258442, 152708520, 483810550, 1413811358, 4483843328, 15051967962, 49724234652, 154802614364, 461020649750, 1486736569982
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    A084612:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-2)^j: j in [0..k]]) >;
    [(&+[Abs(A084612(n,k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 25 2023
    
  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1+x-2x^2)^n],x]]],{n,0,30}]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    for(n=0,40,S=0; for(k=0,2*n,t=polcoeff((1+x-2*x^2)^n,k,x); S=S+abs(t)); print1(S","))
    
  • SageMath
    def A084612(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-2)^j for j in range(k+1))
    def A084613(n): return sum(abs(A084612(n,k)) for k in range(2*n+1))
    [A084613(n) for n in range(51)] # G. C. Greubel, Mar 25 2023

A084614 Triangle, read by rows, where the n-th row lists the (2*n+1) coefficients of (1 + x - 3*x^2)^n.

Original entry on oeis.org

1, 1, 1, -3, 1, 2, -5, -6, 9, 1, 3, -6, -17, 18, 27, -27, 1, 4, -6, -32, 19, 96, -54, -108, 81, 1, 5, -5, -50, 5, 211, -15, -450, 135, 405, -243, 1, 6, -3, -70, -30, 366, 181, -1098, -270, 1890, -243, -1458, 729, 1, 7, 0, -91, -91, 546, 637, -2015, -1911, 4914, 2457, -7371, 0, 5103, -2187, 1, 8, 4, -112, -182, 728, 1456
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Rows:
  1;
  1, 1, -3;
  1, 2, -5,  -6,   9;
  1, 3, -6, -17,  18,  27, -27;
  1, 4, -6, -32,  19,  96, -54,  -108,   81;
  1, 5, -5, -50,   5, 211, -15,  -450,  135,  405, -243;
  1, 6, -3, -70, -30, 366, 181, -1098, -270, 1890, -243, -1458, 729;
		

Crossrefs

Programs

  • Magma
    A084614:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-3)^j: j in [0..k]]) >;
    [A084614(n,k): k in [0..2*n], n in [0..15]]; // G. C. Greubel, Mar 25 2023
    
  • Mathematica
    With[{eq= (1+x-3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n,0,13}]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    for(n=0,12, for(k=0,2*n,t=polcoeff((1+x-3*x^2)^n,k,x); print1(t",")); print(" "))
    
  • SageMath
    def A084614(n,k): return ( (1+x-3*x^2)^n ).series(x, 30).list()[k]
    flatten([[A084614(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Mar 25 2023

Formula

From G. C. Greubel, Mar 25 2023: (Start)
T(n, k) = Sum_{j=0..k} binomial(n, k-j)*binomial(k-j, j)*(-3)^j, for 0 <= k <= 2*n.
T(n, 2*n) = (-3)^n.
T(n, 2*n-1) = (-1)^(n-1)*A027471(n+1), n >= 1.
Sum_{k=0..2*n} T(n, k) = (-1)^n.
Sum_{k=0..2*n} (-1)^k*T(n, k) = (-3)^n. (End)

A084602 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 7, 6, 9, 1, 3, 12, 19, 36, 27, 27, 1, 4, 18, 40, 91, 120, 162, 108, 81, 1, 5, 25, 70, 185, 331, 555, 630, 675, 405, 243, 1, 6, 33, 110, 330, 726, 1441, 2178, 2970, 2970, 2673, 1458, 729, 1, 7, 42, 161, 539, 1386, 3157, 5797, 9471, 12474, 14553
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Rows:
{1},
{1,1, 3},
{1,2, 7,  6,  9},
{1,3,12, 19, 36, 27,  27},
{1,4,18, 40, 91,120, 162, 108,  81},
{1,5,25, 70,185,331, 555, 630, 675, 405, 243},
{1,6,33,110,330,726,1441,2178,2970,2970,2673,1458,729},
		

Crossrefs

Programs

  • Mathematica
    With[{eq = (1 + x + 3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n, 0, 10}]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    for(n=0,15, for(k=0,2*n,t=polcoeff((1+x+3*x^2)^n,k,x); print1(t",")); print(" "))

A084604 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 4x^2)^n.

Original entry on oeis.org

1, 1, 1, 4, 1, 2, 9, 8, 16, 1, 3, 15, 25, 60, 48, 64, 1, 4, 22, 52, 145, 208, 352, 256, 256, 1, 5, 30, 90, 285, 561, 1140, 1440, 1920, 1280, 1024, 1, 6, 39, 140, 495, 1206, 2841, 4824, 7920, 8960, 9984, 6144, 4096, 1, 7, 49, 203, 791, 2261, 6027, 12489, 24108, 36176
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Rows:
{1},
{1,1, 4},
{1,2, 9,  8, 16},
{1,3,15, 25, 60,  48,  64},
{1,4,22, 52,145, 208, 352, 256, 256},
{1,5,30, 90,285, 561,1140,1440,1920,1280,1024},
{1,6,39,140,495,1206,2841,4824,7920,8960,9984,6144,4096},
		

Crossrefs

Programs

  • Mathematica
    With[{eq=(1+x+4x^2)},Flatten[Table[CoefficientList[Expand[eq^n],x],{n,0,10}]]] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    for(n=0,10, for(k=0,2*n,t=polcoeff((1+x+4*x^2)^n,k,x); print1(t",")); print(" "))

A084612 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x - 2*x^2)^n.

Original entry on oeis.org

1, 1, 1, -2, 1, 2, -3, -4, 4, 1, 3, -3, -11, 6, 12, -8, 1, 4, -2, -20, 1, 40, -8, -32, 16, 1, 5, 0, -30, -15, 81, 30, -120, 0, 80, -32, 1, 6, 3, -40, -45, 126, 141, -252, -180, 320, 48, -192, 64, 1, 7, 7, -49, -91, 161, 357, -363, -714, 644, 728, -784, -224, 448, -128, 1, 8, 12, -56, -154, 168, 700, -328, -1791, 656, 2800
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Triangle begins:
  1;
  1, 1, -2;
  1, 2, -3,  -4,   4;
  1, 3, -3, -11,   6,  12,  -8;
  1, 4, -2, -20,   1,  40,  -8,  -32,   16;
  1, 5,  0, -30, -15,  81,  30, -120,    0,  80, -32;
  1, 6,  3, -40, -45, 126, 141, -252, -180, 320,  48, -192, 64;
		

Crossrefs

Programs

  • Magma
    A084612:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-2)^j: j in [0..k]]) >;
    [A084612(n,k): k in [0..2*n], n in [0..13]]; // G. C. Greubel, Mar 25 2023
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[n,k-j]*Binomial[k-j,j]*(-2)^j, {j,0,k}];
    Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Mar 25 2023 *)
  • PARI
    {T(n,k)=polcoeff((1+x-2*x^2)^n, k)}
    for(n=0,10,for(k=0,2*n,print1(T(n,k),", "));print(""))
    
  • SageMath
    def A084612(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-2)^j for j in range(k+1))
    flatten([[A084612(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Mar 25 2023

Formula

From G. C. Greubel, Mar 25 2023: (Start)
T(n, k) = Sum_{j=0..k} binomial(n,k-j)*binomial(k-j,j)*(-2)^j, for 0 <= k <= 2*n.
T(n, 2*n) = (-2)^n.
T(n, 2*n-1) = (-1)^(n-1)*A001787(n), n >= 1.
Sum_{k=0..2*n} T(n, k) = A000007(n).
Sum_{k=0..2*n} (-1)^k*T(n, k) = (-2)^n. (End)

A251687 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (1 + x + 2*x^2)^n.

Original entry on oeis.org

1, 1, 1, 5, 8, 8, 16, 28, 48, 80, 128, 208, 320, 512, 768, 1216, 1792, 2816, 4096, 6400, 9216, 14336, 20480, 31744, 45056, 69632, 98304, 151552, 212992, 327680, 458752, 704512, 983040, 1507328, 2097152, 3211264, 4456448, 6815744, 9437184, 14417920, 19922944, 30408704, 41943040
Offset: 0

Views

Author

Paul D. Hanna, Mar 03 2015

Keywords

Comments

More generally, if G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (p + q*x + r*x^2)^n, then G(x) = (1 + p^2*x)*(1 + r^2*x^3)*(1 + (q^2-2*p*r)*x^2 + p^2*r^2*x^4) / (1-p*r*x^2)^2.

Examples

			G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 28*x^7 +...
where
log(A(x)) = (1 + x + 2^2*x^2)/A(x) * x +
(1 + 2^2*x + 5^2*x^2 + 4^2*x^3 + 4^2*x^4)/A(x)^2 * x^2/2 +
(1 + 3^2*x + 9^2*x^2 + 13^2*x^3 + 18^2*x^4 + 12^2*x^5 + 8^2*x^6)/A(x)^3 * x^3/3 +
(1 + 4^2*x + 14^2*x^2 + 28^2*x^3 + 49^2*x^4 + 56^2*x^5 + 56^2*x^6 + 32^2*x^7 + 16^2*x^8)/A(x)^4 * x^4/4 +
(1 + 5^2*x + 20^2*x^2 + 50^2*x^3 + 105^2*x^4 + 161^2*x^5 + 210^2*x^6 + 200^2*x^7 + 160^2*x^8 + 80^2*x^9 + 32^2*x^10)/A(x)^5 * x^5/5 +...
which involves the squares of coefficients in (1 + x + 2*x^2)^n - see triangle A084600.
		

Crossrefs

Programs

  • PARI
    /* By Definition: */
    {a(n,p=1,q=1,r=2)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff((p + q*x + r*x^2 +x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* By G.F. Identity (faster): */
    {a(n,p=1,q=1,r=2)=polcoeff( (1 + p^2*x)*(1 + r^2*x^3)*(1 + (q^2-2*p*r)*x^2 + p^2*r^2*x^4) / ((1-p*r*x^2)^2 +x*O(x^n)), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: (1 + x)*(1 + 4*x^3)*(1 - 3*x^2 + 4*x^4) / (1 - 2*x^2)^2.
Previous Showing 11-16 of 16 results.