cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A255416 Row 6 of Ludic array A255127.

Original entry on oeis.org

13, 73, 133, 197, 263, 325, 385, 449, 511, 571, 641, 701, 761, 823, 887, 947, 1013, 1075, 1139, 1199, 1261, 1327, 1387, 1447, 1513, 1573, 1637, 1703, 1763, 1825, 1889, 1951, 2011, 2071, 2141, 2201, 2261, 2327, 2387, 2453, 2515, 2575, 2639, 2699, 2767, 2827, 2887, 2953, 3013, 3073, 3143, 3203, 3265, 3325, 3389, 3451, 3511, 3581, 3641, 3701
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Crossrefs

Row 6 of A255127. See A255415 for row 5 and A255417 for row 7.

Programs

  • PARI
    my(L=[x+2^(x%2)|x<-[1..10^4]*3], m(n,k)=2^(n\/k*k)\(2^k-1)); for(i=3, 5, L=vecextract(L, 2^#L-m(#L, L[1])-1)); L255416=vecextract(L, m(#L, L[1]));
    A255416(n)=n--\480*30030+L255416[n%480+1] \\ M. F. Hasler, Nov 17 2024
    
  • Python
    def A255416(n):
        try: n-=1; return A255416.L[n]
        except IndexError: return n//480*30030 + A255416.L[n%480]
        except AttributeError: L = [3*x+5-(x&1) for x in range(10**4)]
        for k in L[:3]: L = [x for i,x in enumerate(L) if i%k]
        A255416.L = L[::13]; return n//480*30030 + A255416.L[n%480]
    # M. F. Hasler, Nov 17 2024
  • Scheme
    (define (A255416 n) (A255127bi 6 n)) ;; Code for A255127bi given in A255127.
    

Formula

a(n) = A255407(A084970(n)).
a(n) = a(n-480) + 30030 = 30030*floor((n-1)/480) + a((n-1)%480 + 1), where % is the modulo or remainder operator. - M. F. Hasler, Nov 10 2024 and Nov 17 2024

A008367 Composite but smallest prime factor >= 17.

Original entry on oeis.org

289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411, 1457
Offset: 1

Views

Author

Keywords

Comments

Composite numbers k such that k^720 mod 30030 = 1. - Gary Detlefs, May 02 2012
The asymptotic density of this sequence is 192/1001. - Amiram Eldar, Mar 22 2021

Crossrefs

Intersection of A002808 and A008366.
Cf. A287391.

Programs

  • GAP
    Filtered([17..1500],n->PowerMod(n,720,30030)=1 and not IsPrime(n)); # Muniru A Asiru, Nov 24 2018
  • Maple
    for i from 1 to 2000 do if gcd(i,30030) = 1 and not isprime(i) then print(i); fi; od;
  • Mathematica
    Select[ Range[ 1500 ], (GCD[ #1, 30030 ]==1&&!PrimeQ[ #1 ])& ]
    Select[Range[2000], ! PrimeQ[#] && FactorInteger[#][[1, 1]] >= 17 &] (* T. D. Noe, Mar 16 2013 *)
  • PARI
    is(n)={gcd(n,30030)==1 && !ispseudoprime(n)} \\ M. F. Hasler, Oct 04 2018
    

Formula

For 1 <= n < 107, a(n) = A287391(n+2); then a(107) = 2329, a(108) = 2363 are not in A287391, but again a(n) = A287391(n) for 108 < n < 120. - M. F. Hasler, Oct 04 2018

A251758 Let n>=2 be a positive integer with divisors 1 = d_1 < d_2 < ... < d_k = n, and s = d_1*d_2 + d_2*d_3 + ... + d_(k-1)*d_k. The sequence lists the values a(n) = floor(n^2/s).

Original entry on oeis.org

2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 13, 1, 2, 1, 17, 1, 19, 1, 2, 1, 23, 1, 4, 1, 2, 1, 29, 1, 31, 1, 2, 1, 4, 1, 37, 1, 2, 1, 41, 1, 43, 1, 2, 1, 47, 1, 6, 1, 2, 1, 53, 1, 4, 1, 2, 1, 59, 1, 61, 1, 2, 1, 4, 1, 67, 1, 2, 1, 71, 1, 73, 1, 2, 1, 6, 1, 79, 1, 2, 1
Offset: 2

Views

Author

Michel Lagneau, Dec 08 2014

Keywords

Comments

s is always less than n^2 and if n is a prime number then s divides n^2.
For n >= 2, the sequence has the following properties:
a(n) = n if n is prime.
a(n) = 1 if n is in A005843 and > 2;
a(n) <= 2 if n is in A016945 and > 3;
a(n) <= 4 if n is in A084967 and > 5;
a(n) <= 6 if n is in A084968 and > 7;
a(n) = 8: <= 35336848261, ...;
a(n) <= 10 if n is in A084969 and > 11;
a(n) <= 12 if n is in A084970 and > 13;
a(n) = 14: 6678671, ...;
This is different from A250480 (a(n) = n for all prime n, and a(n) = A020639(n) - 1 for all composite n), which thus satisfies the above conditions exactly, while with this sequence A020639(n)-1 gives only the guaranteed upper limit for a(n) at composite n. Note that the first different term does not occur until at n = 2431 = 11*13*17, for which a(n) = 9. (See the example below.)
Conjecture: Terms x, where a(x)=n, x=p#k/p#j, p#i is the i-th primorial, k>j is suitable large k and j is the number of primes less than n. As an example, n=9, x = p#7/p#4 = 2431. For n=10, x = p#6/p#4 = 143 although 121 = 11^2 is the least x where a(x)=10 (see formula section). For n=8, x = p#12/p#4, p#13/p#4, p#14/p#4, p#15/p#4, p#16/p#4, etc. But is p#12/p#4 the least such x? - Robert G. Wilson v, Dec 18 2014
n^2/s is only an integer iff n is prime. - Robert G. Wilson v, Dec 18 2014
First occurrence of n >= 1: 4, 2, 3, 25, 5, 49, 7, ??? <= 35336848261, 2431, 121, 11, 169, 13, 6678671, 7429, 289, 17, 361, 19, 31367009, 20677, 529, 23, ..., . - Robert G. Wilson v, Dec 18 2014

Examples

			For n = 2431 = 11*13*17, we have (as the eight divisors of 2431 are [1, 11, 13, 17, 143, 187, 221, 2431]) a(n) = floor((2431*2431) / ((1*11)+(11*13)+(13*17)+(17*143)+(143*187)+(187*221)+(221*2431))) = floor(5909761/608125) = floor(9.718) = 9.
		

Crossrefs

Cf. A000040 (prime numbers), A005843 (even numbers), A016945 (6n+3), A084967 (GCD( 5k, 6) =1), A084968 (GCD( 7k, 30) =1), A084969 (GCD( 11k, 30) =1), A084970 (Numbers whose smallest prime factor is 13).
Cf. also A020639 (the smallest prime divisor), A055396 (its index) and arrays A083140 and A083221 (Sieve of Eratosthenes).
Differs from A250480 for the first time at n = 2431, where a(2431) = 9, while A250480(2431) = 10.
Cf. A078730 (sum of products of two successive divisors of n).

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 2 to nn do:
       x:=divisors(n):n0:=nops(x):s:=sum('x[i]*x[i+1]','i'=1..n0-1):
       z:=floor(n^2/s):printf(`%d, `,z):
    od:
  • Mathematica
    f[n_] := Floor[ n^2/Plus @@ Times @@@ Partition[ Divisors@ n, 2, 1]]; Array[f, 81, 2] (* Robert G. Wilson v, Dec 18 2014 *)

Formula

a(n) <= A250480(n), and especially, for all composite n, a(n) < A020639(n). [Cf. the Comments section above.] - Antti Karttunen, Dec 09 2014
From Robert G. Wilson v, Dec 18 2014: (Start)
a(n) = floor(n^2/A078730(n));
a(n) = n iff n is prime. (End)

Extensions

Comments section edited by Antti Karttunen, Dec 09 2014
Instances of n for which a(n) = 8 and 14 found by Robert G. Wilson v, Dec 18 2014
Previous Showing 11-13 of 13 results.