cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A165933 Least integer, k, whose value is n in A165413.

Original entry on oeis.org

1, 4, 35, 536, 16775, 1060976, 135007759, 34460631520, 17617985239071, 18027600169142208, 36907002795598798911, 151143401509104346210176, 1238053384151947477501575295, 20283338091738780737237428502272, 664629209970464486086782992577855743
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2009

Keywords

Comments

An alternative name: The smallest number whose binary expansion has exactly n distinct run-lengths. - Gus Wiseman, Feb 21 2022
Term a(n) has one 1, followed by n 0's, then two 1's, (n-1) 0's, ..., up to n runs; see Python program. - Michael S. Branicky, Feb 22 2022

Examples

			a(1) in binary is 1, a(2) in binary is 100, a(3) in binary is 100011, a(4) in binary is 1000011000, etc.
From _Gus Wiseman_, Feb 21 2022: (Start)
The terms and their binary expansions begin:
  n              a(n)
  1:               1 =                                             1
  2:               4 =                                           100
  3:              35 =                                        100011
  4:             536 =                                    1000011000
  5:           16775 =                               100000110000111
  6:         1060976 =                         100000011000001110000
  7:       135007759 =                  1000000011000000111000001111
  8:     34460631520 =          100000000110000000111000000111100000
  9:  17617985239071 = 100000000011000000001110000000111100000011111
(End)
		

Crossrefs

A subset of A044813 (distinct run-lengths) and of A175413 (distinct runs).
These are the positions of first appearances in A165413.
The version for runs instead of run-lengths is A350952, firsts of A297770.
A000120 counts binary weight.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A329739 = compositions, for runs A351013.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    g[n_] := Table[ {Table[1, {i}], Table[0, {n - i + 1}]}, {i, Floor[(n + If[ OddQ@n, 1, 0])/2]}]; f[n_] := FromDigits[ If[ OddQ@n, Flatten@ Most@ Flatten[ g@n, 1], Flatten@ g@n], 2]; Array[f, 14]
    s=Table[Length[Union[Length/@Split[IntegerDigits[n,2]]]],{n,0,1000}]; Table[Position[s,k][[1,1]]-1,{k,Union[s]}] (* Gus Wiseman, Feb 21 2022 *)
  • Python
    def a(n): # returns term by construction
        if n == 1: return 1
        q, r = divmod(n+1, 2)
        s = "".join("1"*i + "0"*(n+1-i) for i in range(1, q+1))
        if r == 0: s = s.rstrip("0")
        return int(s, 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 22 2022

Extensions

a(15) and beyond from Michael S. Branicky, Feb 22 2022

A351011 Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2.

Original entry on oeis.org

0, 3, 10, 36, 43, 58, 136, 147, 228, 235, 528, 547, 586, 676, 698, 904, 915, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 2795, 3600, 3619, 3658, 3748, 3770, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 9444, 9451, 10768, 10787, 10826, 11144, 11155, 14368
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and standard compositions begin:
    0:           0  ()
    3:          11  (1,1)
   10:        1010  (2,2)
   36:      100100  (3,3)
   43:      101011  (2,2,1,1)
   58:      111010  (1,1,2,2)
  136:    10001000  (4,4)
  147:    10010011  (3,3,1,1)
  228:    11100100  (1,1,3,3)
  235:    11101011  (1,1,2,2,1,1)
  528:  1000010000  (5,5)
  547:  1000100011  (4,4,1,1)
  586:  1001001010  (3,3,2,2)
  676:  1010100100  (2,2,3,3)
  698:  1010111010  (2,2,1,1,2,2)
  904:  1110001000  (1,1,4,4)
  915:  1110010011  (1,1,3,3,1,1)
		

Crossrefs

The case of twins (binary weight 2) is A000120.
All terms are evil numbers A001969.
These compositions are counted by A003242 interspersed with 0's.
Partitions of this type are counted by A035457, any length A351005.
The Heinz numbers of these compositions are A062503.
Taking singles instead of twins gives A333489, complement A348612.
This is the anti-run case of A351010.
The strict case (distinct twins) is A351009, counted by A077957(n-2).
A011782 counts compositions.
A085207/A085208 represent concatenation of standard compositions.
A345167 ranks alternating compositions, counted by A025047.
A350355 ranks up/down compositions, counted by A025048.
A350356 ranks down/up compositions, counted by A025049.
A351014 counts distinct runs in standard compositions.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&]

A085211 Array A(x,y): concatenation of the binary expansions of x & y in such a way that 'y' is inserted after the least significant 1-bit of 'x', followed by the remaining 0-bits, if any. Listed antidiagonalwise as A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), ... Zero is expanded as an empty string.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 6, 6, 3, 4, 7, 12, 7, 4, 5, 12, 14, 14, 12, 5, 6, 11, 24, 15, 24, 13, 6, 7, 14, 22, 28, 28, 26, 14, 7, 8, 15, 28, 23, 48, 29, 28, 15, 8, 9, 24, 30, 30, 44, 52, 30, 30, 24, 9, 10, 19, 48, 31, 56, 45, 56, 31, 48, 25, 10, 11, 22, 38, 56, 60, 58, 46, 60, 56, 50, 26, 11
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Examples

			A(8,3) = 56 = '1110000' in binary, is produced when '11' (binary expansion of 3) is inserted after the least significant (and only) 1-bit of '1000' (binary expansion of 8).
		

Crossrefs

Same array in binary: A085213. Transpose: A085212. Variant: A085207 (normal concatenation). Can be used to compute A085203.

Formula

a(0, y) = y, a(x, y) = A006519(x) * (y + ((2^A029837(y+1))*A000265(x))).

A351205 Numbers whose binary expansion does not have all distinct runs.

Original entry on oeis.org

5, 9, 10, 17, 18, 20, 21, 22, 26, 27, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 51, 53, 54, 58, 65, 66, 68, 69, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 99, 100, 101, 102, 105, 106, 107, 108, 109, 110, 117, 118, 119, 122, 129
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Examples

			The terms together with their binary expansions begin:
      5:     101     41:  101001     74: 1001010
      9:    1001     42:  101010     75: 1001011
     10:    1010     43:  101011     76: 1001100
     17:   10001     45:  101101     77: 1001101
     18:   10010     46:  101110     80: 1010000
     20:   10100     51:  110011     81: 1010001
     21:   10101     53:  110101     82: 1010010
     22:   10110     54:  110110     83: 1010011
     26:   11010     58:  111010     84: 1010100
     27:   11011     65: 1000001     85: 1010101
     33:  100001     66: 1000010     86: 1010110
     34:  100010     68: 1000100     87: 1010111
     36:  100100     69: 1000101     89: 1011001
     37:  100101     72: 1001000     90: 1011010
     40:  101000     73: 1001001     91: 1011011
For example, 77 has binary expansion 1001101, with runs 1, 00, 11, 0, 1, which are not all distinct, so 77 is in the sequence.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The complement is A175413, for run-lengths A044813.
The version for standard compositions is A351291, complement A351290.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A325545 counts compositions with distinct differences.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Maple
    q:= proc(n) uses ListTools; (l-> is(nops(l)<>add(
          nops(i), i={Split(`=`, l, 1)}) +add(
          nops(i), i={Split(`=`, l, 0)})))(Bits[Split](n))
        end:
    select(q, [$1..200])[];  # Alois P. Heinz, Mar 14 2022
  • Mathematica
    Select[Range[0,100],!UnsameQ@@Split[IntegerDigits[#,2]]&]
  • Python
    from itertools import groupby, product
    def ok(n):
        runs = [(k, len(list(g))) for k, g in groupby(bin(n)[2:])]
        return len(runs) > len(set(runs))
    print([k for k in range(130) if ok(k)]) # Michael S. Branicky, Feb 09 2022

A154103 Auxiliary array for computing A153835.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jan 05 2009

Keywords

Comments

A(x,y): A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), ... is 1 if y=0 and x!=0, or if A085207bi(2*x, y) is greater than A085207bi(2*y, x), 0 otherwise.

Crossrefs

Transpose: A154104. Cf. A085207, A002262, A025581.

A351009 Numbers k such that the k-th composition in standard order is a concatenation of distinct twins (x,x).

Original entry on oeis.org

0, 3, 10, 36, 43, 58, 136, 147, 228, 528, 547, 586, 676, 904, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 3600, 3658, 3748, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 10768, 10787, 11144, 14368, 14474, 14984, 32896, 33027, 33290, 33828, 33835, 33850, 34963
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and standard compositions begin:
    0:           0  ()
    3:          11  (1,1)
   10:        1010  (2,2)
   36:      100100  (3,3)
   43:      101011  (2,2,1,1)
   58:      111010  (1,1,2,2)
  136:    10001000  (4,4)
  147:    10010011  (3,3,1,1)
  228:    11100100  (1,1,3,3)
  528:  1000010000  (5,5)
  547:  1000100011  (4,4,1,1)
  586:  1001001010  (3,3,2,2)
  676:  1010100100  (2,2,3,3)
  904:  1110001000  (1,1,4,4)
		

Crossrefs

The case of twins (binary weight 2) is A000120.
All terms are evil numbers A001969.
The version for Heinz numbers of partitions is A062503, counted by A035457.
These compositions are counted by A032020 interspersed with 0's.
Taking singles instead of twins gives A349051.
This is the strict (distinct twins) version of A351010 and A351011.
A011782 counts compositions.
A085207 represents concatenation using standard compositions.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351014 counts distinct runs in standard compositions, see A351015.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]], 1],0]]//Reverse;
    Select[Range[0,1000], UnsameQ@@Split[stc[#]]&&And@@(#==2&)/@Length/@Split[stc[#]]&]
Previous Showing 11-16 of 16 results.