A267816
Decimal representation of the n-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 3, 23, 111, 479, 1983, 8063, 32511, 130559, 523263, 2095103, 8384511, 33546239, 134201343, 536838143, 2147418111, 8589803519, 34359476223, 137438429183, 549754765311, 2199021158399, 8796088827903, 35184363700223, 140737471578111, 562949919866879
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule=221; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
A281481
a(n) = 2^(n - 1) * (2^n + 1) + 1.
Original entry on oeis.org
2, 4, 11, 37, 137, 529, 2081, 8257, 32897, 131329, 524801, 2098177, 8390657, 33558529, 134225921, 536887297, 2147516417, 8590000129, 34359869441, 137439215617, 549756338177, 2199024304129, 8796095119361, 35184376283137, 140737496743937, 562949970198529
Offset: 0
Similar sequences:
A085601 (2^(n + 1) * (2^n + 1) + 1),
A092431 (2^(n - 1) * (2^n + 1) - 1),
A092440 (2^(n + 1) * (2^n - 1) + 1),
A129868 (2^(n - 1) * (2^n - 1) - 1),
A134169 (2^(n - 1) * (2^n - 1) + 1),
A267816 (2^(n + 1) * (2^n - 1) - 1),
A281482 (2^(n + 1) * (2^n + 1) - 1).
-
[2^(n - 1) * (2^n + 1) + 1: n in [0..200]];
-
Vec((2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017
A296807
Take a prime, convert it to base 2. Consider it as a string of digits and delete its leftmost and rightmost digit. Leading zeros are kept. Repeat the process. a(n) is the least prime that, in the first n steps of this process, generates a string that is a prime read in base 2.
Original entry on oeis.org
2, 13, 43, 151, 2143, 2143, 12479, 57727, 246527, 4267455487, 276009615632383, 4469780781584383, 576406542684520447
Offset: 0
a(1) = 13 because 13 in base 2 is 1101 and 10 is 2 and 13 is the least number with this property;
a(2) = 43 because 43 in base 2 is 101011 while 0101 is 5 and 10 is 2 and 43 is the least number with this property;
a(3) = 151 because 151 in base 2 is 10010111 while 001011 is 11, 0101 is 5 and 10 is 2 and 151 is the least number with this property.
-
with(numtheory): P:=proc(q) local a,b,c,i,j,k,n,ok,x; x:=5; for k from 1 to q do for n from x to q do a:=convert(ithprime(n),base,2); ok:=1; for i from 1 to k do b:=nops(a)-i; while a[b]=0 do b:=b-1; od;
c:=0; for j from b by -1 to i+1 do c:=2*c+a[j]; od;if not isprime(c) then ok:=0; break; fi; od;if ok=1 then x:=n; print(ithprime(n)); break; fi; od; od; end: P(10^20);
-
Table[SelectFirst[Prime@ Range[#, # + 10^5] &@ PrimePi[2 (4^n + 2^n) + 1], AllTrue[Map[FromDigits[#, 2] &, Rest@ NestWhileList[Most@ Rest@ # &, IntegerDigits[#, 2], Length@ # > 2 &]], PrimeQ] &], {n, 8}] (* Michael De Vlieger, Dec 29 2017 *)
-
a(n) = if(!n, return(2)); forprime(p=2*4^n + 3*2^n - 1, , my(b=p); for(x=1, n, b = (b - (b>=4*2^(logint(p, 2) - 2*x))*4*2^(logint(p, 2) - 2*x) - 1)/2; if(!isprime(b) || (b==2 && x!=n), next(2))); return(p)) \\ Iain Fox, Dec 29 2017 (corrected by Iain Fox, Oct 26 2019)
A220980
a(n) = 5^(4n+2) + 5^(3n+2) + 3 * 5^(2n+1) + 5^(n+1) + 1: the right Aurifeuillian factor of 5^(10n+5) - 1.
Original entry on oeis.org
71, 19151, 10165751, 6152578751, 3820806643751, 2384948876968751, 1490211490478593751, 931334495635986718751, 582078099253082277343751, 363798066973743438730468751, 227373698726297855377246093751, 142108550062403118610382324218751
Offset: 0
A220981
a(n) = 6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1: the left Aurifeuillian factor of 6^(12n+6) + 1.
Original entry on oeis.org
13, 39493, 58809673, 78002205553, 101481622729633, 131604778271166913, 170578072060319947393, 221073129991920857571073, 286511629376393032228157953, 371319255900007820952456748033, 481229795439713382306649129101313
Offset: 0
-
Table[6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1, {n, 0, 20}]
LinearRecurrence[{1555,-345210,12427560,-72550080,60466176},{13,39493,58809673,78002205553,101481622729633},20] (* Harvey P. Dale, Oct 01 2021 *)
A220982
a(n) = 6^(4n+2) + 6^(3n+2) + 3 * 6^(2n+1) + 6^(n+1) + 1: the right Aurifeuillian factor of 6^(12n+6) + 1.
Original entry on oeis.org
97, 55117, 62169337, 78727802257, 101638351073377, 131638631590149697, 170585384377200633217, 221074709452366968135937, 286511970539849391404729857, 371319329591314394530363646977, 481229811357035602199451623479297
Offset: 0
A220987
The left Aurifeuillian factor of 11^(22n+11) + 1.
Original entry on oeis.org
58367, 3812903020530517, 107454987376543082369146967, 2808133028073215608147547774721982717, 72885505321551844061773948114862247606146502767, 1890579685660625069233746109183146734516524279847333062117
Offset: 0
-
Table[z = 11^n; 161051 z^10 - 161051 z^9 + 73205 z^8 - 14641 z^7 - 1331 z^6 + 1331 z^5 - 121 z^4 - 121 z^3 + 55 z^2 - 11 z + 1, {n, 0, 10}]
A220988
The right Aurifeuillian factor of 11^(22n+11) + 1.
Original entry on oeis.org
407353, 4572972882642803, 109245858982819139102535553, 2812355783638980226466572392952970603, 72895462357781065526518523423275265184080402953, 1890603163831201090586603020695655490130990020251181357603
Offset: 0
-
Table[z = 11^n; 161051 z^10 + 161051 z^9 + 73205 z^8 + 14641 z^7 - 1331 z^6 - 1331 z^5 - 121 z^4 + 121 z^3 + 55 z^2 + 11 z + 1, {n, 0, 10}]
A220989
a(n) = 12^(2n+1) - 6 * 12^n + 1: the left Aurifeuillian factor of 12^(6n+3) + 1.
Original entry on oeis.org
7, 1657, 247969, 35821441, 5159655937, 743006877697, 106993187463169, 15407021359595521, 2218611104160546817, 319479999339664244737, 46005119908998197280769, 6624737266944778960896001, 953962166440636632998608897
Offset: 0
A297928
a(n) = 2*4^n + 3*2^n - 1.
Original entry on oeis.org
4, 13, 43, 151, 559, 2143, 8383, 33151, 131839, 525823, 2100223, 8394751, 33566719, 134242303, 536920063, 2147581951, 8590131199, 34360131583, 137439739903, 549757386751, 2199026401279, 8796099313663, 35184384671743, 140737513521151, 562950003752959, 2251799914348543
Offset: 0
a(0) = 2*4^0 + 3*2^0 - 1 = 4; in binary, 100.
a(1) = 2*4^1 + 3*2^1 - 1 = 13; in binary, 1101.
a(2) = 2*4^2 + 3*2^2 - 1 = 43; in binary, 101011.
a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111.
a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111.
...
-
Table[2 4^n+3 2^n-1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{4,13,43},30] (* Harvey P. Dale, Apr 22 2018 *)
-
a(n) = 2*4^n + 3*2^n - 1
-
first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n))
Comments