cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A267816 Decimal representation of the n-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 23, 111, 479, 1983, 8063, 32511, 130559, 523263, 2095103, 8384511, 33546239, 134201343, 536838143, 2147418111, 8589803519, 34359476223, 137438429183, 549754765311, 2199021158399, 8796088827903, 35184363700223, 140737471578111, 562949919866879
Offset: 0

Views

Author

Robert Price, Jan 20 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267814.
Similar entries: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A281481 (2^(n - 1) * (2^n + 1) + 1), A281482 (2^(n + 1) * (2^n + 1) - 1). - Jaroslav Krizek, Jan 22 2017

Programs

  • Mathematica
    rule=221; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 22 2016 and Apr 16 2019: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-4*x+16*x^2-16*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
a(n) = 2^(n + 1) * (2^n - 1) - 1, for n > 0. - Jaroslav Krizek, Jan 22 2017

A281481 a(n) = 2^(n - 1) * (2^n + 1) + 1.

Original entry on oeis.org

2, 4, 11, 37, 137, 529, 2081, 8257, 32897, 131329, 524801, 2098177, 8390657, 33558529, 134225921, 536887297, 2147516417, 8590000129, 34359869441, 137439215617, 549756338177, 2199024304129, 8796095119361, 35184376283137, 140737496743937, 562949970198529
Offset: 0

Views

Author

Jaroslav Krizek, Jan 22 2017

Keywords

Crossrefs

Similar sequences: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A267816 (2^(n + 1) * (2^n - 1) - 1), A281482 (2^(n + 1) * (2^n + 1) - 1).
Cf. A278930.

Programs

  • Magma
    [2^(n - 1) * (2^n + 1) + 1: n in [0..200]];
    
  • PARI
    Vec((2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

From Colin Barker, Jan 22 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: (2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)
a(n) = A278930(n - 2) for n >= 7. - Georg Fischer, Mar 26 2019

A296807 Take a prime, convert it to base 2. Consider it as a string of digits and delete its leftmost and rightmost digit. Leading zeros are kept. Repeat the process. a(n) is the least prime that, in the first n steps of this process, generates a string that is a prime read in base 2.

Original entry on oeis.org

2, 13, 43, 151, 2143, 2143, 12479, 57727, 246527, 4267455487, 276009615632383, 4469780781584383, 576406542684520447
Offset: 0

Views

Author

Paolo P. Lava, Paolo Iachia, Dec 21 2017

Keywords

Comments

a(n) >= 2*4^n + 3*2^n - 1 = A297928(n) >= 2*(4^n + 2^n) + 1 = A085601(n), n > 0. - Iain Fox, Dec 29 2017 (edited by Iain Fox, Jan 08 2018)
a(17) <= 2^163 + 361736822347711983585853439 (probably much smaller), building on a Cunningham chain of length 17 found by Jaroslaw Wroblewski. a(n) exists for n <= 17, and probably for all n. - Jens Kruse Andersen, Jan 21 2018

Examples

			a(1) = 13 because 13 in base 2 is 1101 and 10 is 2 and 13 is the least number with this property;
a(2) = 43 because 43 in base 2 is 101011 while 0101 is 5 and 10 is 2 and 43 is the least number with this property;
a(3) = 151 because 151 in base 2 is 10010111 while 001011 is 11, 0101 is 5 and 10 is 2 and 151 is the least number with this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,i,j,k,n,ok,x; x:=5; for k from 1 to q do for n from x to q do a:=convert(ithprime(n),base,2); ok:=1; for i from 1 to k do b:=nops(a)-i; while a[b]=0 do b:=b-1; od;
    c:=0; for j from b by -1 to i+1 do c:=2*c+a[j]; od;if not isprime(c) then ok:=0; break; fi; od;if ok=1 then x:=n; print(ithprime(n)); break; fi; od; od; end: P(10^20);
  • Mathematica
    Table[SelectFirst[Prime@ Range[#, # + 10^5] &@ PrimePi[2 (4^n + 2^n) + 1], AllTrue[Map[FromDigits[#, 2] &, Rest@ NestWhileList[Most@ Rest@ # &, IntegerDigits[#, 2], Length@ # > 2 &]], PrimeQ] &], {n, 8}] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    a(n) = if(!n, return(2)); forprime(p=2*4^n + 3*2^n - 1, , my(b=p); for(x=1, n, b = (b - (b>=4*2^(logint(p, 2) - 2*x))*4*2^(logint(p, 2) - 2*x) - 1)/2; if(!isprime(b) || (b==2 && x!=n), next(2))); return(p)) \\ Iain Fox, Dec 29 2017 (corrected by Iain Fox, Oct 26 2019)

Extensions

Definition corrected, a(10)-a(12) by Jens Kruse Andersen, Jan 21 2018

A220980 a(n) = 5^(4n+2) + 5^(3n+2) + 3 * 5^(2n+1) + 5^(n+1) + 1: the right Aurifeuillian factor of 5^(10n+5) - 1.

Original entry on oeis.org

71, 19151, 10165751, 6152578751, 3820806643751, 2384948876968751, 1490211490478593751, 931334495635986718751, 582078099253082277343751, 363798066973743438730468751, 227373698726297855377246093751, 142108550062403118610382324218751
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220979.

Crossrefs

Programs

  • Mathematica
    Table[5^(4n+2) + 5^(3n+2) + 3 * 5^(2n+1) + 5^(n+1) + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 5^(10n+5) - 1 = (5^(2n+1) - 1) * A220979(n) * a(n).
G.f.: -(27734375*x^4-22687500*x^3+2417450*x^2-36300*x+71) / ((x-1)*(5*x-1)*(25*x-1)*(125*x-1)*(625*x-1)). [Colin Barker, Jan 03 2013]

A220981 a(n) = 6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1: the left Aurifeuillian factor of 6^(12n+6) + 1.

Original entry on oeis.org

13, 39493, 58809673, 78002205553, 101481622729633, 131604778271166913, 170578072060319947393, 221073129991920857571073, 286511629376393032228157953, 371319255900007820952456748033, 481229795439713382306649129101313
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220982.

Crossrefs

Programs

  • Mathematica
    Table[6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1, {n, 0, 20}]
    LinearRecurrence[{1555,-345210,12427560,-72550080,60466176},{13,39493,58809673,78002205553,101481622729633},20] (* Harvey P. Dale, Oct 01 2021 *)

Formula

Aurifeuillian factorization: 6^(12n+6) + 1 = (6^(4n+2) + 1) * a(n) * A220982(n).
G.f.: -(21835008*x^4+24984288*x^3+1885788*x^2+19278*x+13) / ((x-1)*(6*x-1)*(36*x-1)*(216*x-1)*(1296*x-1)). [Colin Barker, Jan 03 2013]

A220982 a(n) = 6^(4n+2) + 6^(3n+2) + 3 * 6^(2n+1) + 6^(n+1) + 1: the right Aurifeuillian factor of 6^(12n+6) + 1.

Original entry on oeis.org

97, 55117, 62169337, 78727802257, 101638351073377, 131638631590149697, 170585384377200633217, 221074709452366968135937, 286511970539849391404729857, 371319329591314394530363646977, 481229811357035602199451623479297
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220981.

Crossrefs

Programs

  • Mathematica
    Table[6^(4n+2) + 6^(3n+2) + 3 * 6^(2n+1) + 6^(n+1) + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 6^(12n+6) + 1 = (6^(4n+2) + 1) * A220981(n) * a(n).
G.f.: -(162922752*x^4-124050528*x^3+9947772*x^2-95718*x+97) / ((x-1)*(6*x-1)*(36*x-1)*(216*x-1)*(1296*x-1)). [Colin Barker, Jan 03 2013]

A220987 The left Aurifeuillian factor of 11^(22n+11) + 1.

Original entry on oeis.org

58367, 3812903020530517, 107454987376543082369146967, 2808133028073215608147547774721982717, 72885505321551844061773948114862247606146502767, 1890579685660625069233746109183146734516524279847333062117
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220988.

Crossrefs

Programs

  • Mathematica
    Table[z = 11^n; 161051 z^10 - 161051 z^9 + 73205 z^8 - 14641 z^7 - 1331 z^6 + 1331 z^5 - 121 z^4 - 121 z^3 + 55 z^2 - 11 z + 1, {n, 0, 10}]

Formula

a(n) = 161051 z^10 - 161051 z^9 + 73205 z^8 - 14641 z^7 - 1331 z^6 + 1331 z^5 - 121 z^4 - 121 z^3 + 55 z^2 - 11 z + 1 with z = 11^n.
Aurifeuillian factorization: 11^(22n+11) + 1 = (11^(2n+1) + 1) * a(n) * A220988(n).

A220988 The right Aurifeuillian factor of 11^(22n+11) + 1.

Original entry on oeis.org

407353, 4572972882642803, 109245858982819139102535553, 2812355783638980226466572392952970603, 72895462357781065526518523423275265184080402953, 1890603163831201090586603020695655490130990020251181357603
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220987.

Crossrefs

Programs

  • Mathematica
    Table[z = 11^n; 161051 z^10 + 161051 z^9 + 73205 z^8 + 14641 z^7 - 1331 z^6 - 1331 z^5 - 121 z^4 + 121 z^3 + 55 z^2 + 11 z + 1, {n, 0, 10}]

Formula

a(n) = 161051 z^10 + 161051 z^9 + 73205 z^8 + 14641 z^7 - 1331 z^6 - 1331 z^5 - 121 z^4 + 121 z^3 + 55 z^2 + 11 z + 1 with z = 11^n.
Aurifeuillian factorization: 11^(22n+11) + 1 = (11^(2n+1) + 1) * A220987(n) * a(n).

A220989 a(n) = 12^(2n+1) - 6 * 12^n + 1: the left Aurifeuillian factor of 12^(6n+3) + 1.

Original entry on oeis.org

7, 1657, 247969, 35821441, 5159655937, 743006877697, 106993187463169, 15407021359595521, 2218611104160546817, 319479999339664244737, 46005119908998197280769, 6624737266944778960896001, 953962166440636632998608897
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220990.

Crossrefs

Programs

  • Mathematica
    Table[12^(2n+1) - 6 * 12^n + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 12^(6n+3) + 1 = (12^(2n+1) + 1) * a(n) * A220990(n).
G.f.: -(1008*x^2+558*x+7) / ((x-1)*(12*x-1)*(144*x-1)). [Colin Barker, Jan 03 2013]

A297928 a(n) = 2*4^n + 3*2^n - 1.

Original entry on oeis.org

4, 13, 43, 151, 559, 2143, 8383, 33151, 131839, 525823, 2100223, 8394751, 33566719, 134242303, 536920063, 2147581951, 8590131199, 34360131583, 137439739903, 549757386751, 2199026401279, 8796099313663, 35184384671743, 140737513521151, 562950003752959, 2251799914348543
Offset: 0

Views

Author

Iain Fox, Jan 08 2018

Keywords

Comments

For n > 0, in binary, this is a 1 followed by n-1 0's followed by 10 followed by n 1's.

Examples

			a(0) = 2*4^0 + 3*2^0 - 1 = 4;   in binary, 100.
a(1) = 2*4^1 + 3*2^1 - 1 = 13;  in binary, 1101.
a(2) = 2*4^2 + 3*2^2 - 1 = 43;  in binary, 101011.
a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111.
a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111.
...
		

Crossrefs

A lower bound for A296807.

Programs

  • Mathematica
    Table[2 4^n+3 2^n-1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{4,13,43},30] (* Harvey P. Dale, Apr 22 2018 *)
  • PARI
    a(n) = 2*4^n + 3*2^n - 1
    
  • PARI
    first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n))

Formula

G.f.: (4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)).
E.g.f.: 2*e^(4*x) + 3*e^(2*x) - e^x.
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3), n > 2.
a(n) = A000918(n) + A085601(n).
Previous Showing 11-20 of 25 results. Next