cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A267697 Numbers with 7 odd divisors.

Original entry on oeis.org

729, 1458, 2916, 5832, 11664, 15625, 23328, 31250, 46656, 62500, 93312, 117649, 125000, 186624, 235298, 250000, 373248, 470596, 500000, 746496, 941192, 1000000, 1492992, 1771561, 1882384, 2000000, 2985984, 3543122, 3764768, 4000000, 4826809, 5971968, 7086244, 7529536, 8000000, 9653618
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly seven odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 7 subparts. - Omar E. Pol, Dec 28 2016
Numbers that can be formed in exactly 6 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
Numbers of the form p^6 * 2^k where p is an odd prime. - David A. Corneth, Aug 14 2018

Crossrefs

Column 7 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, this sequence, A267891, A267892, A267893.

Programs

  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 7; \\ Michel Marcus, Apr 03 2016
    
  • PARI
    upto(n) = {my(res = List()); forprime(p = 3, sqrtnint(n, 6), listput(res, p^6)); q = #res; for(i = 1, q, odd = res[i]; for(j = 1, logint(n \ odd, 2), listput(res, odd <<= 1))); listsort(res); res} \\ David A. Corneth, Aug 14 2018
    
  • Python
    from sympy import integer_log, primerange, integer_nthroot
    def A267697(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(integer_log(x//p**6,2)[0]+1 for p in primerange(3,integer_nthroot(x,6)[0]+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A001227(a(n)) = 7.
Sum_{n>=1} 1/a(n) = 2 * P(6) - 1/32 = 0.00289017370127..., where P(6) is the value of the prime zeta function at 6 (A085966). - Amiram Eldar, Sep 16 2024

Extensions

More terms from Michel Marcus, Apr 03 2016

A382235 Decimal expansion of the multiple prime zeta value primezetamult(3, 3).

Original entry on oeis.org

0, 0, 6, 7, 3, 5, 9, 4, 6, 6, 2, 2, 1, 3, 5, 4, 4, 6, 7, 2, 4, 5, 6, 2, 2, 8, 2, 5, 8, 6, 7, 7, 6, 8, 0, 1, 4, 1, 9, 3, 4, 6, 2, 3, 6, 6, 0, 5, 8, 0, 4, 2, 1, 2, 1, 1, 2, 4, 6, 4, 2, 8, 8, 9, 3, 9, 6, 2, 5, 8, 1, 3, 4, 5, 0, 2, 1, 3, 6, 9, 2, 5, 9, 5, 9, 1, 7, 1, 9, 4, 2, 8, 8, 1, 9, 4, 7, 5, 0, 2, 4, 0, 0, 8, 1, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Comments

Prime zeta analog of A258987.

Examples

			0.00673594662213544672456...
		

Crossrefs

Cf. A258987, A382234 (2,2), A382236 (2,2,).

Programs

  • Mathematica
    kk = {0, 0}; kkk = RealDigits[(PrimeZetaP[3]^2 - PrimeZetaP[6])/2, 10, 105][[1]]; Flatten[AppendTo[kk, kkk]]

Formula

Equals (A085541^2 - A085966)/2 .
Equals Sum_{p,q prime p>q} 1/(p^3*q^3).

A179694 Numbers of the form p^6*q^3 where p and q are distinct primes.

Original entry on oeis.org

1728, 5832, 8000, 21952, 85184, 91125, 125000, 140608, 250047, 314432, 421875, 438976, 778688, 941192, 970299, 1560896, 1601613, 1906624, 3176523, 3241792, 3581577, 4410944, 5000211, 5088448, 5359375, 6644672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,6}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179694(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(6) - P(9) = A085541 * A085966 - A085969 = 0.000978..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A054753(n)^3. - R. J. Mathar, May 05 2023

A086036 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 6, 4, 2, 5, 0, 9, 6, 3, 6, 6, 4, 7, 7, 3, 7, 9, 1, 1, 0, 1, 8, 1, 9, 1, 3, 8, 0, 4, 3, 5, 7, 6, 5, 9, 8, 9, 8, 4, 5, 4, 5, 5, 4, 6, 9, 7, 8, 8, 1, 5, 0, 5, 2, 8, 9, 8, 5, 6, 6, 2, 5, 8, 4, 3, 8, 9, 8, 4, 5, 2, 0, 0, 9, 7, 7, 4, 5, 3, 2, 3, 9, 4, 4, 7, 4, 5, 8, 2, 6, 4, 7, 0, 4, 5, 7, 0, 1, 1, 9, 4, 4
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			6.4250963664773791101819138043576598984545546978815052898566258438984520...*10^-5
		

Crossrefs

Cf. A085995 (same for primes 4k+3), A343626 (for primes 3k+1), A343616 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085966 (PrimeZeta(6)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1003; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1 + 2^-s)^-1 DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits + dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1]*Log[b[(2n + 1)*6]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086036_upto(N=100)={localprec(N+3); digits((PrimeZeta41(6)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(6) = Sum_{p in A002144} 1/p^6 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(6m)*zeta(6m)/zeta(12m)/(1+2^(-6m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A190106 Numbers with prime factorization p^2*q^3*r^3 where p, q, and r are distinct primes.

Original entry on oeis.org

5400, 9000, 10584, 13500, 24696, 26136, 36504, 37044, 49000, 62424, 68600, 77976, 95832, 114264, 121000, 143748, 158184, 165375, 169000, 171500, 181656, 207576, 231525, 237276, 266200, 289000, 295704, 332024, 353736, 361000, 363096
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,3};Select[Range[500000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/6), t1=p^3;forprime(q=p+1, (lim\t1)^(1/3), t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A190106(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=integer_nthroot(x//r**2,3)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,8)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)^2/2 - P(2)*P(6)/2 - P(3)*P(5) + P(8) = 0.00085907862422456410530..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A190115 Numbers with prime factorization p^2*q^3*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

10800, 16200, 18000, 21168, 31752, 40500, 45000, 49392, 52272, 67500, 73008, 78408, 98000, 109512, 111132, 124848, 137200, 155952, 172872, 187272, 191664, 228528, 233928, 242000, 245000, 259308, 316368, 338000, 342792, 363312, 415152
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,4};Select[Range[900000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\72)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A190115(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//(r**4*q**3))) for r in primerange(integer_nthroot(x,4)[0]+1) for q in primerange(integer_nthroot(x//r**4,3)[0]+1))+sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,9)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)*P(4) - P(2)*P(7) - P(3)*P(6) - P(4)*P(5) + 2*P(9) = 0.00061171477910848082277..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A190382 Numbers with prime factorization p^2*q^2*r^2*s^3 where p, q, r, and s are distinct primes.

Original entry on oeis.org

88200, 132300, 217800, 220500, 304200, 308700, 326700, 426888, 456300, 520200, 544500, 596232, 640332, 649800, 760500, 780300, 894348, 952200, 974700, 1019592, 1185800, 1197900, 1273608, 1300500, 1428300, 1472328, 1494108, 1513800
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,2,3};Select[Range[2000000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\900, 3), t1=p^3; forprime(q=2,sqrtint(lim\(36*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(4*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,sqrtint(lim\t3), if(s==p || s==q || s==r, next); listput(v, t3*s^2))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Formula

Sum_{n>=1} 1/a(n) = (P(2)^3*P(3) - 3*P(2)^2*P(5) - 3*P(2)*P(3)*P(4) + 6*P(2)*P(7) + 2*P(3)*P(6) + 3*P(4)*P(5) - 6*P(9))/6 = 0.00010783911499432484110..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A190464 Numbers with prime factorization p^4*q^6.

Original entry on oeis.org

5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704, 204004089, 218803264
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A175745 (Numbers with 35 divisors).
First different term in A175745 is 17179869184(=2^34).

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={4,6}; Select[Range[50000000],f] (*and*) lst={};Do[Do[If[n!=m,AppendTo[lst,Prime[n]^6*Prime[m]^4]], {n,50}],{m,50}]; Take[Union@lst,50]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) = A085964 * A085966 - P(10) = 0.000320..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A190472 Numbers with prime factorization p^3*q^3*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

54000, 81000, 135000, 148176, 222264, 518616, 574992, 686000, 862488, 949104, 1423656, 1715000, 2122416, 2401000, 2662000, 2963088, 3162456, 3183624, 3472875, 4394000, 4444632, 5256144, 5788125, 6169176, 6655000, 7304528, 7884216
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,3,4}; Select[Range[5000000],f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^3*Prime[n]^3*Prime[m]^4]], {n,25}, {m,25}, {k,25}]; Take[Union@lst,60]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\216)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=q+1, (lim\t2)^(1/3), if(p==r,next);listput(v,t2*r^3)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(3)^2*P(4)/2 - P(4)*P(6)/2 - P(3)*P(7) + P(10) = 0.000064520760706206924448..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A216427 Numbers of the form a^2*b^3, where a >= 2 and b >= 2.

Original entry on oeis.org

32, 72, 108, 128, 200, 243, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1024, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3125, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4096, 4232, 4500, 4563, 4608
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Powerful numbers (A001694) that are not squares of cubefree numbers (A004709), cubes of squarefree numbers (A062838), or 6th powers of primes (A030516). - Amiram Eldar, Feb 07 2023

Crossrefs

Programs

  • Mathematica
    With[{max = 5000}, Union[Table[i^2*j^3, {j, 2, max^(1/3)}, {i, 2, Sqrt[max/j^3]}] // Flatten]] (* Amiram Eldar, Feb 07 2023 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4, 3), for(a=2, sqrtint(lim\b^3), listput(v, a^2*b^3))); Set(v) \\ Charles R Greathouse IV, Jan 03 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primepi
    def A216427(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b = isqrt(x), integer_nthroot(x,6)[0]
            l, c = 0, n+x-1+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(1, b+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 1 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - P(6) = 0.12806919584708298724..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023
Previous Showing 11-20 of 31 results. Next