cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A190472 Numbers with prime factorization p^3*q^3*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

54000, 81000, 135000, 148176, 222264, 518616, 574992, 686000, 862488, 949104, 1423656, 1715000, 2122416, 2401000, 2662000, 2963088, 3162456, 3183624, 3472875, 4394000, 4444632, 5256144, 5788125, 6169176, 6655000, 7304528, 7884216
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,3,4}; Select[Range[5000000],f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^3*Prime[n]^3*Prime[m]^4]], {n,25}, {m,25}, {k,25}]; Take[Union@lst,60]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\216)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=q+1, (lim\t2)^(1/3), if(p==r,next);listput(v,t2*r^3)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(3)^2*P(4)/2 - P(4)*P(6)/2 - P(3)*P(7) + P(10) = 0.000064520760706206924448..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A179705 Numbers of the form p^7*q^3 where p and q are distinct primes.

Original entry on oeis.org

3456, 16000, 17496, 43904, 170368, 273375, 281216, 625000, 628864, 750141, 877952, 1557376, 2109375, 2910897, 3121792, 3813248, 4804839, 6483584, 6588344, 8821888, 10176896, 10744731, 13289344, 15000633, 19056256
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,7}; Select[Range[100000],f]
    With[{nn=25},Take[Union[#[[1]]^7 #[[2]]^3&/@(Flatten[{#,Reverse[ #]}&/@ Subsets[ Prime[Range[nn]],{2}],1])],nn]] (* Harvey P. Dale, Jan 01 2016 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/7), t=p^7;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(7) - P(10) = A085541 * A085967 - P(10) = 0.000454..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A086037 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 1, 8, 4, 4, 8, 5, 9, 9, 7, 9, 5, 2, 6, 8, 2, 5, 1, 0, 2, 6, 5, 8, 2, 1, 6, 6, 5, 0, 7, 9, 3, 5, 8, 2, 0, 6, 0, 6, 7, 4, 9, 5, 6, 3, 3, 4, 4, 7, 9, 4, 3, 6, 2, 6, 5, 6, 9, 1, 4, 6, 8, 2, 1, 9, 4, 3, 9, 9, 4, 9, 5, 0, 8, 5, 2, 8, 5, 3, 2, 3, 8, 9, 5, 3, 4, 0, 5, 4, 6, 4, 2, 7, 4, 5, 3, 9, 2, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			1.2818448599795268251026582166507935820606749563344794362656914682... * 10^-5
		

Crossrefs

Cf. A085996 (same for primes 4k+3), A343627 (for primes 3k+1), A343617 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085967 (PrimeZeta(7)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 1200; Join[{0, 0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086037_upto(N=100)={localprec(N+3); digits((PrimeZeta41(7)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(7) = Sum_{p in A002144} 1/p^7 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m*log(DirichletBeta(7m)*zeta(7m)/zeta(14m)/(1+2^(-7m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A085996 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 4, 5, 8, 5, 1, 4, 4, 0, 7, 5, 3, 3, 7, 9, 7, 2, 6, 6, 8, 7, 3, 1, 1, 2, 1, 4, 7, 2, 8, 2, 2, 1, 5, 1, 5, 3, 3, 6, 2, 7, 2, 2, 1, 3, 5, 7, 4, 4, 4, 6, 1, 4, 5, 0, 2, 7, 9, 2, 6, 4, 7, 2, 3, 9, 7, 3, 2, 9, 5, 0, 1, 1, 5, 1, 2, 7, 7, 2, 8, 9, 8, 9, 9, 2, 7, 1, 8, 0, 7, 7, 6, 4, 5, 3, 9, 2, 5, 8, 9, 3, 5, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0004585144075337972668731121472822151533627221357444614502792647239732950115...
		

Crossrefs

Cf. A086037 (analog for primes 4k+1), A085967 (PrimeZeta(7)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 275; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085996_upto(N=100)={localprec(N+3); digits((PrimeZeta43(7)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(7) = Sum_{primes p == 3 mod 4} 1/p^7
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*7))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A343627 Decimal expansion of the Prime Zeta modulo function P_{3,1}(7) = Sum 1/p^7 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 1, 3, 7, 2, 2, 5, 5, 4, 8, 1, 9, 1, 9, 6, 7, 4, 4, 4, 8, 9, 4, 7, 1, 2, 4, 4, 4, 4, 0, 0, 3, 9, 3, 6, 6, 6, 9, 0, 5, 7, 8, 6, 6, 2, 6, 3, 7, 0, 7, 2, 8, 1, 9, 6, 3, 7, 0, 6, 2, 0, 2, 1, 0, 5, 7, 4, 1, 2, 0, 6, 7, 2, 6, 0, 0, 6, 9, 5, 5, 9, 2, 2, 1, 2, 7, 4, 9, 2, 4, 8, 2, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 7 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^7 = 1/7^7 + 1/13^7 + 1/19^7 + 1/31^7 + ...
The complementary Sum_{primes in A003627} 1/p^7 is given by P_{3,2}(7) = A085967 - 1/3^7 - (this value here) = 0.0078253541130504928742517... = A343607.

Examples

			P_{3,1}(7) = 1.231372255481919674448947124444003936669057866...*10^-6
		

Crossrefs

Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n = 3..9), A343607 (P_{3,2}(7): same for p==2 (mod 3)), A086037 (P_{4,1}(7): same for p==1 (mod 4)).
Cf. A085967 (PrimeZeta(7)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=7}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^7); s \\ For illustration: primes up to 10^N give 6N+2 (= 50 for N=8) correct digits.
    
  • PARI
    A343627_upto(N=100)={localprec(N+5);digits((PrimeZeta31(7)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A126226 Continued fraction of Product_{primes p} ((p-1)/p)^(1/p).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 11, 1, 1, 4, 1, 9, 2, 2, 1, 1, 4, 4, 2, 2, 2, 1, 14, 1, 2, 2, 2, 7, 2, 2, 1, 1, 4, 2, 4, 1, 11, 7, 2, 8, 32, 2, 1, 293, 2, 145, 1, 2, 1, 21, 1, 1, 3, 1, 1, 8, 8, 5, 2, 3, 4, 3, 1, 3, 1, 1, 1, 1, 3, 2, 1, 3, 1, 2, 2, 1, 2, 19, 3, 2, 1, 15, 1, 2, 1, 2, 5, 3, 1, 1, 1, 38, 1, 10, 1, 2, 1, 80, 1
Offset: 0

Views

Author

Martin Fuller, Dec 20 2006

Keywords

Comments

This might be interpreted as the expected value of phi(n)/n for very large n. - David W. Wilson, Dec 05 2006

Examples

			0.55986561693237348...
		

Crossrefs

Programs

  • PARI
    contfrac(exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(k
    				

A190114 Numbers with prime factorization p^2*q^2*r^5 where p, q, and r are distinct primes.

Original entry on oeis.org

7200, 14112, 24300, 34848, 39200, 47628, 48672, 83232, 96800, 103968, 112500, 117612, 135200, 152352, 164268, 189728, 231200, 242208, 264992, 276768, 280908, 288800, 297675, 350892, 394272, 423200, 453152, 484128, 514188, 532512, 566048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,5};Select[Range[900000],f]
    With[{upto=600000},Select[#[[1]]^2 #[[2]]^2 #[[3]]^5&/@ Flatten[ Permutations/@ Subsets[Prime[Range[Ceiling[Surd[upto,5]+1]]],{3}],1]// Union,#<=upto&]] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)^2*P(5)/2 - P(2)*P(8)/2 - P(4)*P(5)/2 - P(2)*P(7) + P(9) = 0.00053812627050585644544..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A343617 Decimal expansion of P_{3,2}(7) = Sum 1/p^7 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 7, 8, 2, 5, 3, 5, 4, 1, 1, 3, 0, 5, 0, 4, 9, 2, 8, 7, 4, 2, 5, 1, 7, 0, 1, 6, 7, 0, 7, 5, 5, 9, 2, 0, 6, 0, 3, 3, 0, 7, 9, 3, 0, 9, 7, 5, 1, 3, 2, 4, 4, 3, 3, 1, 4, 6, 8, 0, 4, 8, 8, 3, 3, 9, 4, 0, 3, 5, 4, 3, 7, 0, 6, 3, 8, 0, 9, 2, 1, 8, 4, 3, 5, 7, 0, 1, 1, 0, 5, 8, 6, 5, 3, 8, 3, 8, 6, 4, 5, 6, 2, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0078253541130504928742517016707559206033079309751324433146804883394...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001015 (n^7), A085967 (PrimeZeta(7)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343627 (for primes 3k+1), A086037 (for primes 4k+1), A085996 (for primes 4k+3).

Programs

  • PARI
    A343617_upto(N=100)={localprec(N+5); digits((PrimeZeta32(7)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(7) = Sum_{p in A003627} 1/p^7 = P(7) - 1/3^7 - P_{3,1}(7).
Previous Showing 11-18 of 18 results.