cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A293557 Decimal expansion of real root of x^7 - x^6 - x^5 + x^2 - 1.

Original entry on oeis.org

1, 5, 4, 5, 2, 1, 5, 6, 4, 9, 7, 3, 2, 7, 5, 5, 2, 4, 3, 2, 5, 2, 5, 5, 0, 6, 2, 4, 1, 0, 5, 1, 1, 6, 1, 1, 9, 6, 9, 1, 4, 7, 0, 0, 5, 5, 3, 6, 4, 2, 3, 3, 1, 2, 3, 5, 6, 0, 6, 1, 0, 7, 2, 5, 4, 9, 8, 2, 1, 1, 5, 8, 8, 1, 6, 6, 5, 3, 3, 1, 2, 0, 5, 0, 4, 3, 1
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the seventh smallest of the Pisot numbers.

Examples

			1.545215649732755243252550...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^7 - #^6 - #^5 + #^2 - 1 &, 1], 10, 100]] (* Paolo Xausa, Jun 25 2024 *)
  • PARI
    solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293557.txt", n, " ", d)); }

A333833 Number of permutations p of [n] such that |p(i) - p(i-1)| <= 2 and |p(i) - p(i-2)| <= 3.

Original entry on oeis.org

1, 1, 2, 6, 12, 14, 18, 28, 42, 56, 74, 102, 144, 200, 274, 376, 520, 720, 994, 1370, 1890, 2610, 3604, 4974, 6864, 9474, 13078, 18052, 24916, 34390, 47468, 65520, 90436, 124826, 172294, 237814, 328250, 453076, 625370, 863184, 1191434, 1644510, 2269880, 3133064
Offset: 0

Views

Author

Alois P. Heinz, Apr 07 2020

Keywords

Examples

			a(5) = 14: 12345, 12354, 12435, 12453, 13245, 21345, 31245, 35421, 45321, 53421, 54213, 54231, 54312, 54321.
a(6) = 18: 123456, 123465, 123546, 123564, 124356, 132456, 213456, 213465, 312456, 465321, 564312, 564321, 645321, 653421, 654213, 654231, 654312, 654321.
		

Crossrefs

Programs

  • Mathematica
    Join[{1, 1, 2, 6, 12}, LinearRecurrence[{1, 0, 0, 1}, {14, 18, 28, 42}, 40]] (* Jean-François Alcover, Oct 26 2021 *)

Formula

G.f.: -(2*x^8+4*x^7+2*x^6+x^5+5*x^4+4*x^3+x^2+1)/(x^4+x-1).
a(n) = 2*A302510(n-2) for n >= 6.
Limit_{n-> infinity} a(n+1)/a(n) = A086106.

A374002 Decimal expansion of the positive real root of x^6 - 2*x^5 + x^4 - x^2 + x - 1.

Original entry on oeis.org

1, 5, 6, 1, 7, 5, 2, 0, 6, 7, 7, 2, 0, 2, 9, 7, 2, 9, 4, 7, 0, 2, 9, 9, 5, 3, 6, 4, 0, 6, 0, 7, 2, 3, 7, 8, 0, 7, 9, 0, 8, 4, 7, 2, 8, 6, 9, 4, 7, 2, 7, 6, 6, 4, 2, 8, 4, 6, 2, 8, 4, 7, 8, 3, 9, 4, 6, 2, 5, 2, 2, 4, 1, 0, 4, 3, 9, 4, 2, 9, 4, 4, 4, 9, 6, 2, 4, 4, 0, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 25 2024

Keywords

Comments

Eighth smallest Pisot-Vijayaraghavan number.

Examples

			1.561752067720297294702995364060723780790847286947...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^6 - 2*#^5 + #^4 - #^2 + # - 1 &, 2], 10, 100]]

A374003 Decimal expansion of the positive real root of x^8 - x^7 - x^6 + x^2 - 1.

Original entry on oeis.org

1, 5, 7, 3, 6, 7, 8, 9, 6, 8, 3, 9, 3, 5, 1, 6, 9, 8, 8, 7, 7, 4, 2, 5, 1, 4, 1, 8, 6, 2, 9, 3, 2, 1, 4, 6, 7, 8, 1, 2, 7, 0, 4, 0, 6, 1, 5, 0, 7, 9, 1, 3, 4, 0, 8, 9, 3, 7, 2, 7, 4, 3, 7, 0, 0, 5, 1, 2, 1, 1, 2, 9, 7, 4, 4, 8, 7, 9, 0, 4, 7, 1, 8, 8, 1, 5, 4, 8, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Jun 25 2024

Keywords

Comments

Tenth smallest Pisot-Vijayaraghavan number.

Examples

			1.5736789683935169887742514186293214678127040615079...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^8 - #^7 - #^6 + #^2 - 1 &, 2], 10, 100]]

A356032 Decimal expansion of the positive real root of x^4 + x - 1.

Original entry on oeis.org

7, 2, 4, 4, 9, 1, 9, 5, 9, 0, 0, 0, 5, 1, 5, 6, 1, 1, 5, 8, 8, 3, 7, 2, 2, 8, 2, 1, 8, 7, 0, 3, 6, 5, 6, 5, 7, 8, 6, 4, 9, 4, 4, 8, 1, 3, 5, 0, 0, 1, 1, 0, 1, 7, 2, 7, 0, 3, 9, 8, 0, 2, 8, 4, 3, 7, 4, 5, 2, 9, 0, 6, 4, 7, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 27 2022

Keywords

Comments

The other real (negative) root is -A060007.
One of the pair of complex conjugate roots is obtained by negating sqrt(2*u) and sqrt(u) in the formula for r below, giving 0.248126062... - 1.033982060...*i.
Also, the absolute value of the negative real root of x^4 - x - 1, cf. A060007. - M. F. Hasler, Jul 12 2025

Examples

			r = 0.724491959000515611588372282187036565786494481350011017270...
		

Crossrefs

Cf. A060007 (positive root of x^4 - x - 1), A072223, A086106, A202538, A376658.

Programs

  • Mathematica
    First[RealDigits[x/.N[{x->Root[-1+#1+#1^4 &,2,0]},75]]] (* Stefano Spezia, Aug 27 2022 *)
  • PARI
    solve(x=0, 1, x^4 + x - 1) \\ Michel Marcus, Aug 28 2022
    
  • PARI
    polrootsreal(x^4 + x - 1)[2] \\ M. F. Hasler, Jul 12 2025

Formula

r = (-sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)) and ep = (-1 + sqrt(3)*i)/2, with i = sqrt(-1). For the trigonometric version set u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))).
Equals sqrt(A072223) = 1/A086106 = 1/exp(A202538). - Hugo Pfoertner, Jul 13 2025

A168639 Expansion of x*(1 + x^2 - x^3) / ( (1-x)*(1-x-x^4) ).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 10, 15, 21, 29, 40, 56, 78, 108, 149, 206, 285, 394, 544, 751, 1037, 1432, 1977, 2729, 3767, 5200, 7178, 9908, 13676, 18877, 26056, 35965, 49642, 68520, 94577, 130543, 180186, 248707, 343285, 473829, 654016, 902724, 1246010, 1719840, 2373857, 3276582
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

References

  • R. Pallu de la Barrière, Optimal Control Theory, Dover Publications, New York, 1967, pages 339-344.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    [0] cat Coefficients(R!( x*(1+x^2-x^3)/((1-x)*(1-x-x^4)) )); // G. C. Greubel, Apr 20 2025
    
  • Mathematica
    LinearRecurrence[{2,-1,0,1,-1}, {0,1,2,4,5}, 60] (* G. C. Greubel, Jul 28 2016 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,-1,2]^n*[0;1;2;4;5])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • SageMath
    def A168639_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x^2-x^3)/((1-x)*(1-x-x^4)) ).list()
    print(A168639_list(60)) # G. C. Greubel, Apr 20 2025

Formula

Lim_{n -> oo} a(n+1)/a(n) = 1.38027756909761411567330169182..., see A086106.
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -a(n-5). - R. J. Mathar, Dec 02 2009
a(n) = A098578(n) - A098578(n-3) + A098578(n-2). - R. J. Mathar, May 23 2013
a(n) = A003269(n+4) + A003269(n+2) - A003269(n+1) - 1. - G. C. Greubel, Apr 20 2025

A368747 Self-describing bit sequences from the beta transform.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 24, 25, 26, 28, 29, 30, 31, 32, 36, 40, 42, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 72, 80, 82, 84, 96, 97, 98, 100, 101, 104, 105, 106, 108, 109, 112, 113, 114, 115, 116, 117, 118, 120
Offset: 0

Views

Author

Linas Vepstas, Feb 06 2024

Keywords

Comments

A bit sequence b_0, b_1, ..., b_k of the binary representation of an odd integer 2n+1 is self-describing if the largest real root beta of the monic polynomial p_n(x) = x^(k+1) - b_0 * x^k - b_1 * x^(k-1) - ... - b_k regenerates the same bit sequence when the beta transform t(x) = (beta * x) mod 1 is iterated for x=1, the generated bit being zero or one, depending on whether the modulo was taken or not. Not all integers n generate such self-describing polynomials; the sequence given here begins the list of valid self-describing polynomials.
The number of such valid polynomials of degree m is given by Moreau's necklace counting function A001037.
The bit sequences are not Lyndon words, and cannot be rotated, although there are the same number of them (given by the necklace function).
The bit sequences are not isomorphic to the irreducible polynomials over the field F_2 of two elements, although there are the same number of them (given by the necklace function).

Examples

			n=1 generates p_1(x) = x^2 - x - 1 whose largest real root is the golden mean A000045. Iteration of the golden mean under the beta transform terminates after two steps, and requires modulo-one to be applied at each step, thus giving the bit sequence 11.
n=2 generates a polynomial whose largest root is the limit of Narayana's A058265.
n=3 ... is the tribonacci limit A058265.
n=4 ... is the 2nd Pisot number A086106.
n=5 is not valid (not self-describing).
n=6 ... is A109134.
n=7 ... is the tetranacci limit A086088.
n=8 ... is the silver (plastic) number A060006.
n=9 is not valid (not self-describing).
n=10 ... is a Pisot number A293506.
n=11 is not valid (not self-describing).
Sequences corresponding to larger values of n are not (currently) in the OEIS, except when n = 2^m - 1, which are limits to the generalized Fibonacci numbers.
		

Formula

The binary representation for every integer 2n+1 encodes a polynomial p_n(x) but not all such polynomials have (positive, real) roots r_n that are self-describing. An integer n is valid if it is self-describing; the validity filter is theta_n(r_n) = 1 where theta_n(x) is recursively defined as theta_n(x) = theta_{n/2}(x) * (x < r_{n/2}) if n is even, and theta_n(x) = theta_{(n-1)/2}(x) if n is odd. The sequence starts with theta_0(x) = 1.
Previous Showing 11-17 of 17 results.