cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A181915 The value of r at the bifurcation point of the first period-9 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 7, 2, 7, 4, 2, 1, 0, 5, 3, 6, 0, 0, 0, 6, 5, 6, 6, 1, 8, 5, 8, 1, 6, 5, 8, 4, 0, 8, 3, 4, 5, 0, 9, 7, 2, 1, 4, 4, 2, 7, 7, 1, 4, 0, 2, 3, 5, 6, 3, 6, 9, 9, 1, 2, 5, 1, 7, 9, 3, 4, 0, 9, 0, 6, 9, 3, 2, 4, 9, 2, 8, 8, 2, 9, 9, 1, 1, 9, 8, 3, 7, 6, 5, 7, 2, 6, 2, 4, 9, 5, 5, 6, 0, 9, 9, 8, 0
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 252*2 = 504 polynomial.

Examples

			3.6872742105...
		

Crossrefs

A181916 The value of r at the bifurcation point of the first period-10 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 0, 5, 9, 1, 6, 9, 3, 2, 2, 6, 9, 4, 2, 0, 8, 7, 3, 3, 9, 4, 7, 1, 4, 0, 8, 7, 3, 1, 8, 8, 7, 9, 0, 6, 6, 6, 2, 7, 5, 3, 2, 5, 6, 1, 3, 5, 2, 3, 3, 2, 5, 4, 8, 7, 0, 6, 7, 9, 2, 2, 1, 5, 8, 3, 6, 3, 8, 0, 1, 8, 2, 7, 8, 5, 5, 4, 1, 5, 9, 2, 1, 9, 9, 5, 3, 7, 9, 0, 8, 0, 7, 1, 6, 7, 3, 7, 8, 4
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 495*2 = 990 polynomial.

Examples

			3.605916932....
		

Crossrefs

A181917 The value of r at the bifurcation point of the first period-11 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 1, 7, 2, 6, 6, 4, 5, 6, 5, 1, 7, 4, 3, 5, 6, 4, 8, 0, 5, 1, 4, 6, 6, 5, 6, 0, 4, 4, 1, 8, 2, 7, 5, 0, 4, 6, 2, 3, 4, 3, 9, 9, 4, 9, 2, 1, 3, 7, 4, 4, 6, 6, 1, 8, 3, 8, 0, 4, 4, 6, 8, 2, 8, 4, 3, 3, 8, 6, 3, 3, 7, 5, 9, 4, 1, 6, 0, 6, 7, 3, 5, 4, 7, 0, 0, 0, 4, 1, 0, 0, 9, 3, 4, 4, 2, 2, 4
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 1023*2 = 2046 polynomial.

Examples

			3.68172664565...
		

Crossrefs

A181918 The value of r at the bifurcation point of the first period-12 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 5, 8, 2, 8, 1, 1, 7, 7, 9, 5, 2, 5, 1, 0, 2, 0, 1, 8, 3, 9, 4, 3, 2, 0, 6, 4, 9, 6, 5, 8, 6, 9, 0, 2, 2, 8, 2, 7, 4, 6, 0, 2, 5, 2, 3, 4, 6, 1, 5, 1, 1, 7, 6, 7, 5, 3, 8, 6, 8, 6, 7, 1, 5, 9, 0, 8, 9, 2, 1, 5, 8, 4, 1, 4, 6, 6, 3, 3, 6, 9, 5, 3, 3, 1, 5, 8, 3, 2, 8, 6, 1, 8, 1, 8, 5, 0, 9, 8, 8
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 2010*2 = 4020 polynomial

Examples

			3.5828117795...
		

Crossrefs

A181919 The value of r at the bifurcation point of the first period-13 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 7, 9, 7, 0, 3, 8, 4, 9, 8, 0, 3, 2, 9, 4, 7, 3, 0, 2, 7, 1, 7, 2, 8, 9, 8, 8, 1, 5, 7, 7, 3, 5, 7, 8, 2, 1, 1, 6, 7, 5, 6, 9, 1, 5, 0, 3, 3, 2, 5, 1, 5, 9, 3, 9, 6, 9, 6, 3, 4, 9, 5, 7, 8, 3, 3, 0, 7, 5, 2, 8, 5, 7, 4, 5, 0, 9, 8, 2, 6, 2, 4, 8, 2, 1, 0, 6, 9, 0, 5, 1, 7, 2, 2, 2, 4, 0, 3, 8
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 4095*2 = 8190 polynomial.

Examples

			3.6797038498...
		

Crossrefs

A181912 The value of r at the bifurcation point of the first period-5 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 4, 1, 1, 2, 0, 7, 5, 6, 6, 3, 2, 4, 4, 0, 2, 0, 6, 3, 0, 7, 2, 9, 3, 8, 2, 3, 6, 7, 0, 9, 9, 8, 3, 7, 1, 0, 0, 0, 5, 0, 8, 4, 3, 2, 6, 5, 6, 2, 2, 5, 2, 5, 5, 2, 4, 9, 8, 1, 1, 5, 6, 5, 0, 7, 3, 0, 9, 0, 6, 8, 4, 5, 5, 7, 0, 1, 1, 8, 9, 4, 4, 7, 5, 0, 9, 8, 6, 2, 2, 9, 2, 2, 0, 0, 2, 5, 0, 4
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 15*2 = 30 polynomial.

Examples

			3.7411207566...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /. NSolve[1291467969 - 313083144 T + 149426046 T^2 - 88548768 T^3 + 58697100 T^4 - 26978787 T^5 + 11351480 T^6 - 4444924 T^7 + 1519712 T^8 - 462764 T^9 + 118147 T^10 - 24008 T^11 + 3838 T^12 - 448 T^13 + 32 T^14 - T^15 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A181913 The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 0, 2, 1, 5, 4, 9, 2, 8, 1, 5, 3, 5, 8, 8, 7, 7, 0, 2, 2, 2, 6, 1, 2, 3, 1, 2, 4, 2, 6, 4, 1, 3, 6, 5, 5, 9, 1, 8, 6, 0, 3, 4, 2, 5, 9, 4, 6, 7, 0, 0, 8, 1, 7, 5, 7, 5, 0, 4, 2, 7, 8, 9, 9, 3, 5, 4, 6, 2, 6, 6, 2, 0, 1, 5, 8, 4, 7, 0, 9, 4, 8, 9, 6, 9, 1, 3, 1, 9, 8, 8, 4, 4, 4, 9, 7, 1, 2, 6
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 63*2 = 126 polynomial.

Examples

			3.702154928...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /.  NSolve[97862157334118736160267353892330031361 - 24275883989858911295570196314376441888 T + 11949756847721247033090755550100031472 T^2 - 7305759525507048491687489710934851842 T^3 + 4979912078948645588349153608449721856 T^4 - 3626559126667087845228068253830569728 T^5 + 2762422187660818660072532819743957008 T^6 - 1880399068065596812679449750312116489 T^7 + 1211937495049324668386707923551814144 T^8 - 759866924055411176816609501610145824 T^9 + 466557599052858501899389873590498576 T^10 - 280965824140635821336538113950238208 T^11 + 165486490562715543623266844910996960 T^12 - 95328733468347624721143436596991728 T^13 + 53730737569188242850960902675061540 T^14 - 29631735433275573295736684905520448 T^15 + 15982002519220233506297359288643328 T^16 - 8426732734596962888735943308790072 T^17 + 4341578043750972227945942898034432 T^18 - 2184193663643426076323203313845088 T^19 + 1072045107586559381111681621669072 T^20 - 512897616845631175409335289338708 T^21 + 239007878643078614755697662563584 T^22 - 108415793383957757795350567428064 T^23 + 47846270482094728117141329426032 T^24 - 20533661180243125068599265318144 T^25 + 8564906198781819799124804441280 T^26 - 3470264291680473250164651552944 T^27 + 1364870535759255877272510765950 T^28 - 520676891296255096870756895040 T^29 + 192488968788190123648373004064 T^30 - 68893036110679144584159460492 T^31 + 23845858487001866959614915840 T^32 - 7973063091544280406837942464 T^33 + 2572118763623299179804574640 T^34 - 799578831968317708137874814 T^35 + 239196982314145129630174464 T^36 - 68763448836715397230901728 T^37 + 18967378806716848507574128 T^38 - 5011787964028065103857408 T^39 + 1266306625250424841996640 T^40 - 305348843999288091901136 T^41 + 70117811645069434371412 T^42 - 15296768944400171831616 T^43 + 3162019501419003256064 T^44 - 617525327585232743224 T^45 + 113570706028361676288 T^46 - 19599347048769496032 T^47 + 3161153679144274672 T^48 - 474387152691155748 T^49 + 65902567592614400 T^50 - 8426269030832672 T^51 + 984947439372048 T^52 - 104425099694592 T^53 + 9947578647040 T^54 - 841756889488 T^55 + 62385936393 T^56 - 3978343968 T^57 + 213336304 T^58 - 9328642 T^59 + 318464 T^60 - 7936 T^61 + 128 T^62 - T^63 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A118746 Decimal expansion of onset of logistic map 7-bifurcation.

Original entry on oeis.org

3, 7, 0, 1, 6, 4, 0, 7, 6, 4, 1, 6, 0, 3, 4, 9, 5, 8, 1, 8, 2, 4, 6, 4, 3, 7, 8, 9, 8, 4, 0, 8, 8, 9, 2, 2, 0, 1, 4, 4, 2, 9, 1, 5, 8, 9, 5, 1, 5, 2, 0, 6, 4, 4, 3, 1, 2, 3, 4, 5, 6, 2, 5, 7, 3, 0, 7, 9, 1, 9, 3, 7, 3, 5, 5, 2, 9, 5, 9, 7, 7, 8, 2, 4, 0, 5, 1, 6, 2, 8, 0, 2, 4, 2, 0, 0, 8, 7, 0, 1, 8, 1, 3, 6, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

Algebraic of order 114.

Examples

			3.7016407641603495818...
		

Crossrefs

A118454 Algebraic degree of the onset of the logistic map n-bifurcation.

Original entry on oeis.org

1, 1, 2, 2, 22, 40, 114, 12, 480, 944, 2026, 3918, 8166, 16104, 32630, 240, 131038, 260928, 524250, 1046418, 2096706, 4190168, 8388562, 16768200, 33554240, 67092432, 134216136, 268402446, 536870854, 1073672968, 2147483586, 65280, 8589928346, 17179606976, 34359737478
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

a(2^n) is A087046(n).

Examples

			The onsets begin at 1, 3, 1+2*sqrt(2), 1+sqrt(6), ...
		

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; degRo[n_] := degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}]; Table[If[n <= 2, 1, 2 If[2^Round[Log2[n]] == n, degRp[n/2], degRo[n]]], {n, 1, 35}] (* Cheng Zhang, Apr 02 2012 *)

Extensions

More terms from Cheng Zhang, Apr 02 2012

A163960 Decimal expansion of 2*(sqrt(2) - 1).

Original entry on oeis.org

8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, Oct 02 2010

Keywords

Comments

Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)). (See A195284.) - Clark Kimberling, Sep 14 2011

Examples

			0.82842712474619009760337744841939615713934375075389614635335...
		

References

  • J. M. Steele, Probability Theory and Combinatorial Optimization, SIAM, 1997, p. 3.

Crossrefs

Essentially the same digit sequence as A010466, A086178, A090488 and A157258.

Programs

Formula

Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1) * 4^k). - Amiram Eldar, May 06 2022
Equals Sum_{k>=1} (-1)^(k+1)/A084158(k). - Amiram Eldar, Dec 02 2024
Previous Showing 11-20 of 22 results. Next