cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A328486 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s))^2.

Original entry on oeis.org

1, 2, 4, 3, 4, 8, 4, 4, 10, 8, 4, 12, 4, 8, 16, 5, 4, 20, 4, 12, 16, 8, 4, 16, 10, 8, 20, 12, 4, 32, 4, 6, 16, 8, 16, 30, 4, 8, 16, 16, 4, 32, 4, 12, 40, 8, 4, 20, 10, 20, 16, 12, 4, 40, 16, 16, 16, 8, 4, 48, 4, 8, 40, 7, 16, 32, 4, 12, 16, 32, 4, 40, 4, 8, 40, 12, 16, 32, 4, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001227 with itself.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; tau(2*n)-tau(n) end:
    a:= n-> add(b(d)*b(n/d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    nmax = 80; A001227 = Table[DivisorSum[n, Mod[#, 2] &], {n, 1, nmax}]; Table[DivisorSum[n, A001227[[#]] A001227[[n/#]] &], {n, 1, nmax}]
    f[2, e_] := e + 1; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = Sum_{d|n} A001227(d) * A001227(n/d).
Sum_{k=1..n} a(k) ~ n * (log(n)^3/24 + (g/2 + log(2)/4 - 1/8)* log(n)^2 + (1/4 - g + 3*g^2/2 - log(2)/2 + 2*g*log(2) - sg1)* log(n) - 1/4 + (1 - 2*log(2))*g + (3*log(2) - 3/2)*g^2 + g^3 + log(2)/2 - log(2)^3/6 + (1 - 3*g - 2*log(2))* sg1 + sg2/2), where g is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e + 1, and a(p^e) = (e + 1)*(e + 2)*(e + 3)/6 for odd primes p. - Amiram Eldar, Nov 30 2020

A363539 Decimal expansion of Sum_{k>=1} (H(k)^2 - (log(k) + gamma)^2)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

1, 9, 6, 8, 9, 6, 9, 0, 8, 3, 9, 1, 0, 5, 2, 8, 5, 4, 6, 4, 6, 4, 8, 9, 1, 4, 5, 3, 7, 9, 6, 6, 8, 0, 5, 4, 2, 3, 1, 1, 3, 7, 7, 9, 4, 2, 8, 6, 8, 1, 9, 8, 1, 3, 4, 4, 5, 5, 1, 4, 3, 1, 5, 3, 4, 0, 2, 2, 5, 2, 1, 9, 8, 2, 6, 8, 9, 2, 3, 3, 4, 1, 1, 8, 6, 4, 4, 9, 1, 8, 3, 7, 4, 5, 7, 6, 7, 4, 4, 0, 9, 8, 7, 8, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Comments

The formula for this sum was found by Olivier Oloa and proved by Roberto Tauraso in 2014.

Examples

			1.96896908391052854646489145379668054231137794286819...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[2] - 2*EulerGamma*StieltjesGamma[1] - 2*EulerGamma^3/3 + 5*Zeta[3]/3, 10, 120][[1]]

Formula

Equals -gamma_2 - 2*gamma*gamma_1 - (2/3)*gamma^3 + (5/3)*zeta(3), where gamma_1 and gamma_2 are the 1st and 2nd Stieltjes constants (A082633, A086279).

A363540 Decimal expansion of Sum_{k>=1} (H(k)^3 - (log(k) + gamma)^3)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

5, 8, 2, 1, 7, 4, 0, 0, 8, 5, 0, 4, 8, 6, 4, 6, 5, 2, 8, 8, 9, 6, 8, 6, 8, 6, 1, 5, 5, 0, 2, 0, 4, 1, 3, 4, 3, 1, 5, 0, 3, 3, 3, 2, 4, 3, 1, 9, 5, 7, 7, 0, 1, 1, 4, 4, 2, 4, 0, 3, 9, 2, 7, 6, 4, 7, 6, 4, 1, 3, 9, 7, 2, 2, 5, 9, 8, 1, 8, 9, 7, 4, 9, 5, 1, 8, 9, 0, 4, 2, 8, 5, 7, 4, 3, 2, 3, 1, 9, 0, 9, 6, 5, 9, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			5.82174008504864652889686861550204134315033324319577...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[3] - 3*EulerGamma*StieltjesGamma[2] - 3*EulerGamma^2*StieltjesGamma[1] - 3*EulerGamma^4/4 + 43*Zeta[4]/8, 10, 120][[1]]

Formula

Equals -gamma_3 - 3*gamma*gamma_2 - 3*gamma^2*gamma_1 - (3/4)*gamma^4 + (43/8)*zeta(4), where gamma_1, gamma_2 and gamma_3 are the 1st, 2nd and 3rd Stieltjes constants (A082633, A086279, A086280).

A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.

Original entry on oeis.org

3, 1, 9, 3, 8, 4, 1, 2, 0, 4, 0, 8, 0, 1, 4, 2, 4, 9, 2, 4, 9, 4, 6, 5, 2, 0, 7, 0, 7, 4, 5, 7, 2, 0, 1, 5, 2, 8, 1, 6, 1, 4, 2, 9, 2, 0, 2, 4, 7, 8, 3, 7, 2, 3, 8, 7, 0, 0, 2, 3, 0, 4, 9, 0, 5, 6, 0, 1, 4, 9, 0, 5, 6, 8, 4, 2, 6, 7, 7, 1, 3, 4, 1, 4, 6, 9, 7, 4, 3, 2, 4, 1, 1, 1, 4, 4, 5, 1, 9, 0, 6, 0, 2, 6, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 30 2023

Keywords

Comments

For the Wolf-Kawalec constant of index 0 see A368551.
For the Wolf-Kawalec constant of index 1 see A368547.

Examples

			0.3193841204080142492494652...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Limit[D[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x], x -> 1],10,105][[1]]

Formula

Equals 6*(Pi^6*gamma_2 - 3456*(zeta'(2))^3 + 288*Pi^2*zeta'(2)*(gamma*zeta'(2) + 2*zeta''(2)) + 8*Pi^4*(3*gamma_1*zeta(2) - 3*gamma*zeta''(2) - 2*zeta'''(2)))/Pi^8 where gamma_2 is A086279.

A082632 Decimal expansion of lim_{y->infinity} y^2*(Re(zeta(1 + i/y)) - gamma).

Original entry on oeis.org

0, 0, 4, 8, 4, 5, 1, 8, 1, 5, 9, 6, 4, 3, 6, 1, 5, 9, 2, 4, 2, 2, 6, 5, 1, 9, 3, 0, 1, 7, 6, 0, 6, 2, 6, 4, 6, 7, 9, 5, 3, 2, 9, 0, 3, 0, 5, 0, 6, 7, 0, 3, 7, 4, 9, 4, 0, 3, 5, 0, 6, 8, 2, 7, 2, 5, 9, 2, 5, 3, 7, 7, 6, 9, 1, 1, 4, 0, 2, 0, 7, 0, 8, 5, 9, 8, 9, 0, 9, 8, 6, 9, 0, 6, 8, 7, 2, 6, 8, 6, 5, 9, 6, 4, 3
Offset: 0

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

Lim_{y->infinity} Im(zeta(1 + i/y))/y = -1. - Vaclav Kotesovec, Feb 18 2021

Examples

			0.00484518159643615924226519301760626...
		

Crossrefs

Cf. A086279.

Programs

  • Mathematica
    StieltjesGamma[2]/2 // RealDigits[#, 10, 103]& // First // Join[{0, 0}, #]& (* Jean-François Alcover, Mar 04 2013 *)

Formula

Equals lim_{y->infinity} y^2*(Re(zeta(1+i/y)) - gamma), where gamma is the Euler-Mascheroni constant A001620.
Equals A086279 / 2. - R. J. Mathar, Jul 15 2010

Extensions

More terms from Jean-François Alcover, Mar 04 2013

A385612 Decimal expansion zeta''''(0) (negated).

Original entry on oeis.org

2, 3, 9, 9, 7, 1, 0, 3, 1, 8, 8, 0, 1, 3, 7, 0, 7, 9, 5, 8, 9, 8, 7, 2, 1, 9, 5, 2, 7, 7, 4, 1, 0, 0, 5, 6, 6, 1, 8, 9, 1, 1, 3, 9, 9, 3, 4, 9, 2, 1, 7, 0, 3, 4, 2, 4, 9, 7, 6, 0, 0, 9, 3, 3, 3, 0, 4, 6, 3, 8, 2, 9, 3, 8, 6, 3, 3, 4, 4, 9, 9, 1, 3, 8, 2, 8, 6, 1, 8, 2, 2, 7, 5, 7, 8, 1, 3, 3, 4, 6, 9, 4, 9, 0, 3
Offset: 2

Views

Author

Artur Jasinski, Jul 04 2025

Keywords

Comments

n-th derivative of zeta function at 0 is close to -n!, which here is the present constant close to 4! = 24.

Examples

			23.997103188013707958987219527741...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(4, 0), 120); # Vaclav Kotesovec, Jul 04 2025
  • Mathematica
    RealDigits[-3 EulerGamma^4/2 - EulerGamma^2 Pi^2/4 + 19 Pi^4/480 - 4 EulerGamma^3 Log[2 Pi] - 3 EulerGamma^2 Log[2Pi]^2 +  Pi^2 Log[2 Pi]^2/4 + Log[2 Pi]^4/2 - 6 EulerGamma^2 StieltjesGamma[1] - Pi^2 StieltjesGamma[1]/2 - 12 EulerGamma Log[2 Pi] StieltjesGamma[1] - 6 Log[2 Pi]^2 StieltjesGamma[1] - 6 EulerGamma StieltjesGamma[2] - 6 Log[2Pi] StieltjesGamma[2] - 2 StieltjesGamma[3] + 4 Log[2 Pi] Zeta[3],10,105][[1]]
  • PARI
    -zeta''''(0)

Formula

Equals -3*gamma^4/2 - gamma^2*Pi^2/4 + 19*Pi^4/480 - 4*gamma^3*log(2*Pi) -3*gamma^2*log(2*Pi)^2 + Pi^2*log(2*Pi)^2/4 + log(2*Pi)^4/2 - 6*gamma^2*StieltjesGamma(1) - Pi^2*StieltjesGamma(1)/2 - 12*gamma*log(2*Pi)* StieltjesGamma(1) - 6*log(2*Pi)^2*StieltjesGamma(1) - 6*gamma*StieltjesGamma(2) - 6*log(2*Pi)*StieltjesGamma(2) - 2*StieltjesGamma(3) + 4*log(2*Pi)*zeta(3).

A386718 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x*y*z)} dx dy dz, where {} denotes fractional part.

Original entry on oeis.org

5, 0, 0, 4, 4, 5, 3, 6, 2, 1, 7, 8, 5, 8, 0, 0, 2, 3, 4, 9, 6, 3, 3, 9, 4, 7, 8, 8, 1, 0, 1, 0, 5, 1, 5, 2, 7, 7, 5, 1, 0, 9, 9, 0, 5, 4, 4, 5, 0, 8, 4, 7, 2, 8, 7, 3, 3, 5, 9, 0, 0, 0, 7, 5, 8, 2, 4, 5, 9, 0, 8, 4, 4, 8, 4, 9, 8, 7, 0, 2, 1, 0, 2, 7, 1, 2, 8, 9, 6, 3, 6, 4, 3, 7, 8, 4, 5, 3, 3, 7, 4, 9, 0, 8, 8
Offset: 0

Views

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.50044536217858002349633947881010515277510990544508...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See section 2.43, page 106.

Crossrefs

Cf. A001620 (gamma), A082633 (-gamma_1), A086279 (-gamma_2).
Cf. A153810 (m=1), A242610 (m=2), this constant (m=3).

Programs

  • Mathematica
    With[{m = 2}, RealDigits[1 - Sum[StieltjesGamma[k]/k!, {k, 0, 2}], 10, 120][[1]]]

Formula

Equals 1 - gamma - gamma_1 - gamma_2/2, where gamma_k is the k-th Stieltjes constant.
In general, for m >= 1, Integral_{x_1=0..1} ... Integral_{x_m=0..1} {1/(x_1*...*x_m)} dx_1 ... dx_m = 1 - Sum_{k=0..m-1} gamma_k/k!, where gamma_0 = gamma is Euler's constant.
Previous Showing 31-37 of 37 results.