cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A362349 a(n) = n! * Sum_{k=0..floor(n/4)} k^k / (k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 82321, 728785, 3633841, 13313521, 2195435881, 28125394441, 196393341145, 981274727161, 227100486456481, 3807339471993121, 34186011461595361, 216366574074187105, 64438384450412161081, 1335035336388170601241
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^4))))

Formula

E.g.f.: exp(x) / (1 + LambertW(-x^4)).

A204042 The number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that all of the fixed points in f are isolated.

Original entry on oeis.org

1, 1, 2, 12, 120, 1520, 23160, 413952, 8505280, 197631072, 5125527360, 146787894440, 4601174623584, 156693888150384, 5761055539858528, 227438694372072120, 9596077520725211520, 430920897407809702208, 20520683482765477749120, 1032920864149903149579336, 54797532208320308334631840
Offset: 0

Views

Author

Geoffrey Critzer, Jan 09 2012

Keywords

Comments

Note this sequence counts the functions enumerated by A065440 for which the statement is vacuously true.
a(n) is also the number of partial endofunctions on {1,2,...,n} without fixed points.

Examples

			a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2  and 1->2,2->1 (which has no fixed points).
		

Crossrefs

Row sums of A349454.

Programs

  • Maple
    a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 16 2021
  • Mathematica
    t = Sum[n^(n-1) x^n/n!, {n,1,20}]; Range[0,20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x,0,20}], x]

Formula

E.g.f.: exp(x)*A(x) where A(x) is the e.g.f. for A065440.
a(n) ~ exp(exp(-1)-1)*n^n. - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{j=0..n} (j-1)^j * binomial(n,j). - Alois P. Heinz, Dec 16 2021

A277462 E.g.f.: cos(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 1, 3, 24, 233, 2860, 42875, 758856, 15488657, 358164432, 9254769459, 264273873600, 8264362186489, 280896392748608, 10310601442639147, 406479520869636480, 17129450693008029729, 768404013933189112064, 36557893891263190204259, 1838650651518153170939904
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Cos[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Table[Cos[Pi*n/2] + Sum[Binomial[n, k] * Cos[Pi*(n-k)/2] * k^k, {k, 1, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(cos(x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ cos(exp(-1)) * n^n.

A277467 E.g.f.: tan(x)/(1+LambertW(-x)).

Original entry on oeis.org

0, 1, 2, 14, 116, 1376, 19926, 346128, 6964712, 159396352, 4085415850, 115906440704, 3605365584732, 121998144397312, 4461190462108030, 175305587376883712, 7366747721719011280, 329646098258032459776, 15649117182518598570834, 785528920149992297070592
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Tan[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Table[Sin[Pi*n/2] * 2^(n+1) * (2^(n+1) - 1) * BernoulliB[n+1] / (n+1) + Sum[Binomial[n, k] * Sin[Pi*k/2] * 2^(k+1) * (2^(k+1)-1) * BernoulliB[k+1] /(k+1) * (n-k)^(n-k), {k, 0, n-1}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(tan(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, May 29 2018

Formula

a(n) ~ tan(exp(-1)) * n^n.

A277469 E.g.f.: arcsin(x)/(1 + LambertW(-x)).

Original entry on oeis.org

0, 1, 2, 13, 112, 1329, 19344, 336533, 6778752, 155247777, 3980956800, 112984562813, 3515475849216, 118984054897681, 4351800687259648, 171034439586509445, 7188243684485414912, 321696219477456836929, 15273278824827215388672, 766732102664665113137517
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[ArcSin[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Flatten[{0, Table[(1-(-1)^n)/2 * (n-2)!!^2 + Sum[Binomial[n, k] * (1-(-1)^k)/2 * (k-2)!!^2 * (n-k)^(n-k), {k, 1, n-1}], {n, 1, 25}]}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(asin(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ arcsin(exp(-1)) * n^n.

A277474 E.g.f.: -exp(-x)*LambertW(-x).

Original entry on oeis.org

0, 1, 0, 6, 36, 380, 4830, 74382, 1342712, 27825912, 651274650, 16994464850, 489240628932, 15404364096420, 526634857318934, 19428038813967630, 769280055136105200, 32543192449030871792, 1464827827285673677746, 69903432558329996409642, 3525344776953738276010940
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-Exp[-x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(-exp(-x)*lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(k-1).
a(n) ~ exp(-exp(-1)) * n^(n-1).

A343899 a(n) = Sum_{k=0..n} (k!)^k * binomial(n,k).

Original entry on oeis.org

1, 2, 7, 232, 332669, 24884861086, 139314218808181027, 82606412229102532926819812, 6984964247802365417561163907914436537, 109110688415634181158572146813823590758078301022074, 395940866122426284350759726810156652343313286283891529199276099071
Offset: 0

Views

Author

Seiichi Manyama, May 03 2021

Keywords

Comments

Binomial transform of (n!)^n.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k!)^k * Binomial[n, k], {k, 0, n}]; Array[a, 11, 0] (* Amiram Eldar, May 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, k!^k*binomial(n, k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k!*x)^k/(1-x)^(k+1)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^(k-1)*x^k)))

Formula

G.f.: Sum_{k>=0} (k! * x)^k/(1 - x)^(k+1).
E.g.f.: exp(x) * Sum_{k>=0} (k!)^(k-1) * x^k.

A277457 E.g.f.: exp(2*x)/(1+LambertW(-x)).

Original entry on oeis.org

1, 3, 12, 71, 616, 7197, 105052, 1829291, 36922928, 846851993, 21744781684, 617832652527, 19242299657896, 651815827343189, 23857403245171724, 938247816632341043, 39455261828928309088, 1766645684585351990961, 83913998998426051745764, 4214295288128637488870327, 223120214856875472660345176
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[2*x]/(1+LambertW[-x]), {x, 0, 20}], x]*Range[0, 20]!
    Table[1 + Sum[Binomial[n, m]*(1 + Sum[Binomial[m, k]*k^k, {k, 1, m}]), {m, 1, n}], {n, 0, 20}]
    Table[2^n + Sum[Binomial[n, k]*2^(n-k)*k^k, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(2*x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ exp(2*exp(-1)) * n^n.

A277465 Expansion of e.g.f. log(1+x)/(1 + LambertW(-x)).

Original entry on oeis.org

0, 1, 1, 11, 86, 1084, 15654, 275113, 5548024, 127423728, 3272008650, 92988690893, 2896148079516, 98104636748468, 3590611928294286, 141201205469361945, 5937400341113630032, 265833516437952849024, 12625912572901413474834, 634047172218326393377149
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Maple
    S:= series(log(1+x)/(1+LambertW(-x)), x, 51):
    seq(coeff(S,x,n)*n!, n=0..50); # Robert Israel, Oct 26 2016
  • Mathematica
    CoefficientList[Series[Log[1+x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
  • PARI
    x='x+O('x^50); concat([0],Vec(serlaplace(log(1+x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017

Formula

E.g.f.: log(1+x)/(1 + LambertW(-x)).
a(n) ~ log(1+exp(-1)) * n^n.
a(n) = (-1)^(n+1)*(n-1)! + Sum_{j=1..n-1} a(j)*binomial(n,j)*(n-j)^(n-j-1). - Robert Israel, Oct 26 2016

A277466 E.g.f.: -log(1-x)/(1+LambertW(-x)).

Original entry on oeis.org

0, 1, 3, 17, 146, 1684, 24294, 419383, 8412760, 192078864, 4914973770, 139265564723, 4327699948956, 146323675764044, 5347193667136398, 210005149832116455, 8820722263274822992, 394546588041904397184, 18723398414958791004690, 939550079246853331267203
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-Log[1-x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Flatten[{0, Table[(n-1)! + n!*Sum[k^k/(k!*(n-k)), {k, 1, n-1}], {n, 1, 25}]}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(-log(1-x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ -log(1-exp(-1)) * n^n.
Previous Showing 21-30 of 41 results. Next