A362349
a(n) = n! * Sum_{k=0..floor(n/4)} k^k / (k! * (n-4*k)!).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 82321, 728785, 3633841, 13313521, 2195435881, 28125394441, 196393341145, 981274727161, 227100486456481, 3807339471993121, 34186011461595361, 216366574074187105, 64438384450412161081, 1335035336388170601241
Offset: 0
A204042
The number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that all of the fixed points in f are isolated.
Original entry on oeis.org
1, 1, 2, 12, 120, 1520, 23160, 413952, 8505280, 197631072, 5125527360, 146787894440, 4601174623584, 156693888150384, 5761055539858528, 227438694372072120, 9596077520725211520, 430920897407809702208, 20520683482765477749120, 1032920864149903149579336, 54797532208320308334631840
Offset: 0
a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2 and 1->2,2->1 (which has no fixed points).
-
a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 16 2021
-
t = Sum[n^(n-1) x^n/n!, {n,1,20}]; Range[0,20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x,0,20}], x]
A277462
E.g.f.: cos(x)/(1 + LambertW(-x)).
Original entry on oeis.org
1, 1, 3, 24, 233, 2860, 42875, 758856, 15488657, 358164432, 9254769459, 264273873600, 8264362186489, 280896392748608, 10310601442639147, 406479520869636480, 17129450693008029729, 768404013933189112064, 36557893891263190204259, 1838650651518153170939904
Offset: 0
-
CoefficientList[Series[Cos[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Table[Cos[Pi*n/2] + Sum[Binomial[n, k] * Cos[Pi*(n-k)/2] * k^k, {k, 1, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 28 2016 *)
-
x='x+O('x^50); Vec(serlaplace(cos(x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
A277467
E.g.f.: tan(x)/(1+LambertW(-x)).
Original entry on oeis.org
0, 1, 2, 14, 116, 1376, 19926, 346128, 6964712, 159396352, 4085415850, 115906440704, 3605365584732, 121998144397312, 4461190462108030, 175305587376883712, 7366747721719011280, 329646098258032459776, 15649117182518598570834, 785528920149992297070592
Offset: 0
-
CoefficientList[Series[Tan[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Table[Sin[Pi*n/2] * 2^(n+1) * (2^(n+1) - 1) * BernoulliB[n+1] / (n+1) + Sum[Binomial[n, k] * Sin[Pi*k/2] * 2^(k+1) * (2^(k+1)-1) * BernoulliB[k+1] /(k+1) * (n-k)^(n-k), {k, 0, n-1}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 28 2016 *)
-
x='x+O('x^30); concat([0], Vec(serlaplace(tan(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, May 29 2018
A277469
E.g.f.: arcsin(x)/(1 + LambertW(-x)).
Original entry on oeis.org
0, 1, 2, 13, 112, 1329, 19344, 336533, 6778752, 155247777, 3980956800, 112984562813, 3515475849216, 118984054897681, 4351800687259648, 171034439586509445, 7188243684485414912, 321696219477456836929, 15273278824827215388672, 766732102664665113137517
Offset: 0
-
CoefficientList[Series[ArcSin[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Flatten[{0, Table[(1-(-1)^n)/2 * (n-2)!!^2 + Sum[Binomial[n, k] * (1-(-1)^k)/2 * (k-2)!!^2 * (n-k)^(n-k), {k, 1, n-1}], {n, 1, 25}]}] (* Vaclav Kotesovec, Oct 28 2016 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace(asin(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017
A277474
E.g.f.: -exp(-x)*LambertW(-x).
Original entry on oeis.org
0, 1, 0, 6, 36, 380, 4830, 74382, 1342712, 27825912, 651274650, 16994464850, 489240628932, 15404364096420, 526634857318934, 19428038813967630, 769280055136105200, 32543192449030871792, 1464827827285673677746, 69903432558329996409642, 3525344776953738276010940
Offset: 0
-
CoefficientList[Series[-Exp[-x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
Table[Sum[(-1)^(n-k)*Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
-
x='x+O('x^50); concat([0], Vec(serlaplace(-exp(-x)*lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
A343899
a(n) = Sum_{k=0..n} (k!)^k * binomial(n,k).
Original entry on oeis.org
1, 2, 7, 232, 332669, 24884861086, 139314218808181027, 82606412229102532926819812, 6984964247802365417561163907914436537, 109110688415634181158572146813823590758078301022074, 395940866122426284350759726810156652343313286283891529199276099071
Offset: 0
-
a[n_] := Sum[(k!)^k * Binomial[n, k], {k, 0, n}]; Array[a, 11, 0] (* Amiram Eldar, May 05 2021 *)
-
a(n) = sum(k=0, n, k!^k*binomial(n, k));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k!*x)^k/(1-x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^(k-1)*x^k)))
A277457
E.g.f.: exp(2*x)/(1+LambertW(-x)).
Original entry on oeis.org
1, 3, 12, 71, 616, 7197, 105052, 1829291, 36922928, 846851993, 21744781684, 617832652527, 19242299657896, 651815827343189, 23857403245171724, 938247816632341043, 39455261828928309088, 1766645684585351990961, 83913998998426051745764, 4214295288128637488870327, 223120214856875472660345176
Offset: 0
-
CoefficientList[Series[Exp[2*x]/(1+LambertW[-x]), {x, 0, 20}], x]*Range[0, 20]!
Table[1 + Sum[Binomial[n, m]*(1 + Sum[Binomial[m, k]*k^k, {k, 1, m}]), {m, 1, n}], {n, 0, 20}]
Table[2^n + Sum[Binomial[n, k]*2^(n-k)*k^k, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2016 *)
-
x='x+O('x^50); Vec(serlaplace(exp(2*x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
A277465
Expansion of e.g.f. log(1+x)/(1 + LambertW(-x)).
Original entry on oeis.org
0, 1, 1, 11, 86, 1084, 15654, 275113, 5548024, 127423728, 3272008650, 92988690893, 2896148079516, 98104636748468, 3590611928294286, 141201205469361945, 5937400341113630032, 265833516437952849024, 12625912572901413474834, 634047172218326393377149
Offset: 0
-
S:= series(log(1+x)/(1+LambertW(-x)), x, 51):
seq(coeff(S,x,n)*n!, n=0..50); # Robert Israel, Oct 26 2016
-
CoefficientList[Series[Log[1+x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
-
x='x+O('x^50); concat([0],Vec(serlaplace(log(1+x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017
A277466
E.g.f.: -log(1-x)/(1+LambertW(-x)).
Original entry on oeis.org
0, 1, 3, 17, 146, 1684, 24294, 419383, 8412760, 192078864, 4914973770, 139265564723, 4327699948956, 146323675764044, 5347193667136398, 210005149832116455, 8820722263274822992, 394546588041904397184, 18723398414958791004690, 939550079246853331267203
Offset: 0
-
CoefficientList[Series[-Log[1-x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Flatten[{0, Table[(n-1)! + n!*Sum[k^k/(k!*(n-k)), {k, 1, n-1}], {n, 1, 25}]}] (* Vaclav Kotesovec, Oct 28 2016 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace(-log(1-x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 07 2017
Comments