A165224
a(0)=1, a(1)=9, a(n) = 18*a(n-1) - 49*a(n-2) for n > 1.
Original entry on oeis.org
1, 9, 113, 1593, 23137, 338409, 4957649, 72655641, 1064876737, 15607654857, 228758827313, 3352883803641, 49142725927201, 720277760311209, 10557006115168913, 154732499817791193, 2267891697076964737
Offset: 0
A375440
Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n) for n >= 1.
Original entry on oeis.org
1, 1, 5, 65, 1593, 61953, 3476813, 265517441, 26492540401, 3349218907137, 523572565927509, 99215376614955457, 22415450137196941993, 5953820173628518544385, 1837040977427662958973341, 651657636773935012586716929, 263375512326578915885862469601, 120319850003020550647400856678401
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1593*x^4 + 61953*x^5 + 3476813*x^6 + 265517441*x^7 + 26492540401*x^8 + ...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 1, 5, 65, 1593, 61953, 3476813, ...];
n=2: [1, 2, 11, 140, 3341, 127742, 7097687, ...];
n=3: [1, 3, 18, 226, 5259, 197637, 10869476, ...];
n=4: [1, 4, 26, 324, 7363, 271928, 14799444, ...];
n=5: [1, 5, 35, 435, 9670, 350926, 18895290, ...];
n=6: [1, 6, 45, 560, 12198, 434964, 23165174, ...];
...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
n=1: 0 = 1*1 - 1*1;
n=2: 0 = 1*1 - 6*2 + 1*11;
n=3: 0 = 1*1 - 15*3 + 15*18 - 1*226;
n=4: 0 = 1*1 - 28*4 + 70*26 - 28*324 + 1*7363;
n=5: 0 = 1*1 - 45*5 + 210*35 - 210*435 + 45*9670 - 1*350926;
n=6: 0 = 1*1 - 66*6 + 495*45 - 924*560 + 495*12198 - 66*434964 + 1*23165174;
...
The triangle A086645(n,k) = binomial(2*n, 2*k) begins:
n=0: 1;
n=1: 1, 1;
n=2: 1, 6, 1;
n=3: 1, 15, 15, 1;
n=4: 1, 28, 70, 28, 1;
n=5: 1, 45, 210, 210, 45, 1;
n=6: 1, 66, 495, 924, 495, 66, 1;
...
-
{a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A-1;
A[m+1] = sum(k=0, m, (-1)^(m-k+1) * binomial(2*m, 2*k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
A178618
Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.
Original entry on oeis.org
1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0
1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
-
A178618 := proc(n,k)
(1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ;
coeftayl(%,x=0,k) ;
end proc:
seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
A280921
Degree of SO(n,C), the special orthogonal group, as an algebraic variety.
Original entry on oeis.org
2, 8, 40, 384, 4768, 111616, 3433600, 196968448, 14994641408, 2112561610752, 397713919469568, 137785594909556736, 64120367727755108352, 54666180849611078369280, 62864933930402036994048000, 131959858152100309567348408320, 374913851106401853810511580364800, 1938349609799484523235647407112847360, 13603397258157549964912652571654029312000
Offset: 2
For n = 4 we have a(4) = 2^3*det({6,1},{1,1}) = 2^3*(6-1) = 40.
- M. Brandt, D. Bruce, T. Brysiewicz, R. Krone, E. Robeva, The degree of SO(n), arXiv:1701.03200 [math.AG], 2017
-
a[n_] := 2^(n-1) Det[Table[Binomial[2n-2i-2j, n-2i], {i, n/2}, {j, n/2}]];
Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Aug 12 2018 *)
-
a(n) = 2^(n-1)*matdet(matrix(n\2,n\2,i,j,binomial(2*n-2*i-2*j,n-2*i))); \\ Michel Marcus, Jan 14 2017
A177809
Symmetrical sequence:Binomial(n,5*m).
Original entry on oeis.org
1, 1, 1, 1, 252, 1, 1, 3003, 3003, 1, 1, 15504, 184756, 15504, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 142506, 30045015, 155117520, 30045015, 142506, 1, 1, 324632, 183579396, 3247943160, 3247943160, 183579396, 324632, 1, 1, 658008, 847660528, 40225345056
Offset: 0
{1},
{1, 1},
{1, 252, 1},
{1, 3003, 3003, 1},
{1, 15504, 184756, 15504, 1},
{1, 53130, 3268760, 3268760, 53130, 1},
{1, 142506, 30045015, 155117520, 30045015, 142506, 1},
{1, 324632, 183579396, 3247943160, 3247943160, 183579396, 324632, 1},
{1, 658008, 847660528, 40225345056, 137846528820, 40225345056, 847660528, 658008, 1},
{1, 1221759, 3190187286, 344867425584, 3169870830126, 3169870830126, 344867425584, 3190187286, 1221759, 1},
{1, 2118760, 10272278170, 2250829575120, 47129212243960, 126410606437752, 47129212243960, 2250829575120, 10272278170, 2118760, 1}
-
t[n_, m_] = Binomial[n, 5*m];
Table[Table[t[n, m], {m, 0, Floor[n/5]}], {n, 0, 50, 5}];
Flatten[%]
A177810
Triangle binomial(6*n,6*m), 0 <= m <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 924, 1, 1, 18564, 18564, 1, 1, 134596, 2704156, 134596, 1, 1, 593775, 86493225, 86493225, 593775, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 5245786, 11058116888, 353697121050, 353697121050, 11058116888, 5245786, 1
Offset: 0
1;
1, 1;
1, 924, 1;
1, 18564, 18564, 1;
1, 134596, 2704156, 134596, 1;
1, 593775, 86493225, 86493225, 593775, 1;
-
t[n_, m_] := Binomial[n, 6*m]; Flatten@Table[Table[t[n, m], {m, 0, n/6}], {n, 0, 42, 6}]
A232535
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
-
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
A338523
Triangle T(n,m) = (2*m*n+2*n-2*m^2+1)*C(2*n+2,2*m+1)/(4*n+2).
Original entry on oeis.org
1, 2, 2, 3, 14, 3, 4, 44, 44, 4, 5, 100, 238, 100, 5, 6, 190, 828, 828, 190, 6, 7, 322, 2233, 4092, 2233, 322, 7, 8, 504, 5096, 14872, 14872, 5096, 504, 8, 9, 744, 10332, 43992, 70070, 43992, 10332, 744, 9, 10, 1050, 19176, 112200, 260780, 260780, 112200, 19176, 1050, 10
Offset: 0
1,
2, 2,
3, 14, 3,
4, 44, 44, 4,
5, 100, 238, 100, 5,
6, 190, 828, 828, 190, 6,
7, 322, 2233, 4092, 2233, 322, 7
-
Table[Sum[Binomial[n + 1, 2 k + 1] Binomial[n - 2 k, m - k] (k + 1)*4^k, {k, 0, n} ], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 04 2020 *)
-
T(n,m):=((2*m*n+2*n-2*m^2+1)*binomial(2*n+2,2*m+1))/(4*n+2);
Comments