cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A165224 a(0)=1, a(1)=9, a(n) = 18*a(n-1) - 49*a(n-2) for n > 1.

Original entry on oeis.org

1, 9, 113, 1593, 23137, 338409, 4957649, 72655641, 1064876737, 15607654857, 228758827313, 3352883803641, 49142725927201, 720277760311209, 10557006115168913, 154732499817791193, 2267891697076964737
Offset: 0

Views

Author

Philippe Deléham, Sep 08 2009

Keywords

Comments

a(n)/a(n-1) tends to 9 + 4*sqrt(2) = 14.65685424... - Klaus Brockhaus, Sep 25 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{18,-49},{1,9},20] (* Harvey P. Dale, Sep 30 2016 *)

Formula

G.f.: (1-9x)/(1-18x+49x^2);
e.g.f.: exp(9x)*cosh(4*sqrt(2)x);
a(n) = Sum_{k=0..n} 8^k*binomial(2n,2k) = Sum_{k=0..n} 8^k*A086645(n,k);
a(n) = 7^n*T(n,9/7) where T is the Chebyshev polynomial of the first kind;
a(n) = (1+sqrt(8))^(2n)/2 + (1-sqrt(8))^(2n)/2.
a(n) = ((9-4*sqrt(2))^n + (9+4*sqrt(2))^n)/2. - Klaus Brockhaus, Sep 25 2009

A375440 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n) for n >= 1.

Original entry on oeis.org

1, 1, 5, 65, 1593, 61953, 3476813, 265517441, 26492540401, 3349218907137, 523572565927509, 99215376614955457, 22415450137196941993, 5953820173628518544385, 1837040977427662958973341, 651657636773935012586716929, 263375512326578915885862469601, 120319850003020550647400856678401
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2024

Keywords

Comments

Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+k, 2*k) * ([x^k] C(x)^n) for n >= 1 is satisfied by the Catalan function C(x) = 1 + x*C(x)^2 (A000108), where coefficient [x^k] C(x)^n = binomial(n+2*k-1,k)*n/(n+k).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1593*x^4 + 61953*x^5 + 3476813*x^6 + 265517441*x^7 + 26492540401*x^8 + ...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins:
  n=1: [1, 1,  5,  65,  1593,  61953,  3476813, ...];
  n=2: [1, 2, 11, 140,  3341, 127742,  7097687, ...];
  n=3: [1, 3, 18, 226,  5259, 197637, 10869476, ...];
  n=4: [1, 4, 26, 324,  7363, 271928, 14799444, ...];
  n=5: [1, 5, 35, 435,  9670, 350926, 18895290, ...];
  n=6: [1, 6, 45, 560, 12198, 434964, 23165174, ...];
  ...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
  n=1: 0 = 1*1 - 1*1;
  n=2: 0 = 1*1 - 6*2 + 1*11;
  n=3: 0 = 1*1 - 15*3 + 15*18 - 1*226;
  n=4: 0 = 1*1 - 28*4 + 70*26 - 28*324 + 1*7363;
  n=5: 0 = 1*1 - 45*5 + 210*35 - 210*435 + 45*9670 - 1*350926;
  n=6: 0 = 1*1 - 66*6 + 495*45 - 924*560 + 495*12198 - 66*434964 + 1*23165174;
  ...
The triangle A086645(n,k) = binomial(2*n, 2*k) begins:
  n=0: 1;
  n=1: 1,  1;
  n=2: 1,  6,   1;
  n=3: 1, 15,  15,   1;
  n=4: 1, 28,  70,  28,  1;
  n=5: 1, 45, 210, 210,  45,  1;
  n=6: 1, 66, 495, 924, 495, 66, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A-1;
    A[m+1] = sum(k=0, m, (-1)^(m-k+1) * binomial(2*m, 2*k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * 2^(4*n) * n^(2*n + 1/2) / (Pi^(2*n) * exp(2*n)), where c = 7.23682343848882192289996... - Vaclav Kotesovec, Sep 12 2024

A178618 Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.

Original entry on oeis.org

1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0

Views

Author

Roger L. Bagula, May 30 2010

Keywords

Comments

Every third row is symmetrical.
Row sums are 3^n.
2*k instead of 3*k in the binomial() gives A034839 with alternating rows of A086645.

Examples

			1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
		

Crossrefs

Programs

  • Maple
    A178618 := proc(n,k)
        (1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ;
        coeftayl(%,x=0,k) ;
    end proc:
    seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
  • Mathematica
    p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
    Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]

A280921 Degree of SO(n,C), the special orthogonal group, as an algebraic variety.

Original entry on oeis.org

2, 8, 40, 384, 4768, 111616, 3433600, 196968448, 14994641408, 2112561610752, 397713919469568, 137785594909556736, 64120367727755108352, 54666180849611078369280, 62864933930402036994048000, 131959858152100309567348408320, 374913851106401853810511580364800, 1938349609799484523235647407112847360, 13603397258157549964912652571654029312000
Offset: 2

Views

Author

Taylor Brysiewicz, Jan 10 2017

Keywords

Examples

			For n = 4 we have a(4) = 2^3*det({6,1},{1,1}) = 2^3*(6-1) = 40.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n-1) Det[Table[Binomial[2n-2i-2j, n-2i], {i, n/2}, {j, n/2}]];
    Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    a(n) = 2^(n-1)*matdet(matrix(n\2,n\2,i,j,binomial(2*n-2*i-2*j,n-2*i))); \\ Michel Marcus, Jan 14 2017

Formula

a(n) = 2^(n-1)*det(binomial(2n-2i-2j, n-2i))_{i,j=1..floor(n/2)}.
a(2*n+1) = A280922(n) * 2^(2*n).
Let M_n be the n X n matrix M_n(i, j) = binomial(2*i+2*j-2, 2*i-1) = A103328(i+j-1, i-1); then a(2*n+1) = 2^(2*n)*det(M_n).
Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-4, 2*i-2) = A086645(i+j-2, i-1); then a(2*n) = 2^(2*n-1)*det(M_n).

A177809 Symmetrical sequence:Binomial(n,5*m).

Original entry on oeis.org

1, 1, 1, 1, 252, 1, 1, 3003, 3003, 1, 1, 15504, 184756, 15504, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 142506, 30045015, 155117520, 30045015, 142506, 1, 1, 324632, 183579396, 3247943160, 3247943160, 183579396, 324632, 1, 1, 658008, 847660528, 40225345056
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are A070782.
5th in the sequence of sequence Binomial(n,k*m),k=1,2,3,4,5,...

Examples

			{1},
{1, 1},
{1, 252, 1},
{1, 3003, 3003, 1},
{1, 15504, 184756, 15504, 1},
{1, 53130, 3268760, 3268760, 53130, 1},
{1, 142506, 30045015, 155117520, 30045015, 142506, 1},
{1, 324632, 183579396, 3247943160, 3247943160, 183579396, 324632, 1},
{1, 658008, 847660528, 40225345056, 137846528820, 40225345056, 847660528, 658008, 1},
{1, 1221759, 3190187286, 344867425584, 3169870830126, 3169870830126, 344867425584, 3190187286, 1221759, 1},
{1, 2118760, 10272278170, 2250829575120, 47129212243960, 126410606437752, 47129212243960, 2250829575120, 10272278170, 2118760, 1}
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = Binomial[n, 5*m];
    Table[Table[t[n, m], {m, 0, Floor[n/5]}], {n, 0, 50, 5}];
    Flatten[%]

A177810 Triangle binomial(6*n,6*m), 0 <= m <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 924, 1, 1, 18564, 18564, 1, 1, 134596, 2704156, 134596, 1, 1, 593775, 86493225, 86493225, 593775, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 5245786, 11058116888, 353697121050, 353697121050, 11058116888, 5245786, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are A070967. k=6 in binomial(k*n,k*m) sequence similar to k=2 in A086645, k=4 in A070775,...

Examples

			1;
1, 1;
1, 924, 1;
1, 18564, 18564, 1;
1, 134596, 2704156, 134596, 1;
1, 593775, 86493225, 86493225, 593775, 1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := Binomial[n, 6*m]; Flatten@Table[Table[t[n, m], {m, 0, n/6}], {n, 0, 42, 6}]

Formula

Left-right symmetric: binomial(6*n,6*m) = binomial(6*n,6*(n-m)).

A232535 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.

Original entry on oeis.org

1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0

Views

Author

Philippe Deléham, Nov 25 2013

Keywords

Comments

Sum_{k=0..n}T(n,k)*x^k = A164111(n), A000012(n), A002001(n), A001653(n+1), A001019(n), A166965(n) for x =-1, 0, 1, 2, 4, 9 respectively.

Examples

			Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
		

Crossrefs

Cf. Columns : A000012, A001105, A180324 ; Diagonals: A000027, A131423
Cf. T(2*n,n): A228329, Row sums : A002001

Programs

  • Maple
    T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
    seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
  • Mathematica
    Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)

Formula

G.f.: (1-x)/(1-2*x*(1+y)+x^2*(1-y)^2).
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)+2*T(n-2,k-1)-T(n-2,k)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
T(n,k) = (A086645(n,k) + A091042(n,k))/2.
T(n,k) = binomial(2*n,2*k)*(2*n+1-k)/(2*n+1-2*k). - Peter Luschny, Nov 26 2013

A338523 Triangle T(n,m) = (2*m*n+2*n-2*m^2+1)*C(2*n+2,2*m+1)/(4*n+2).

Original entry on oeis.org

1, 2, 2, 3, 14, 3, 4, 44, 44, 4, 5, 100, 238, 100, 5, 6, 190, 828, 828, 190, 6, 7, 322, 2233, 4092, 2233, 322, 7, 8, 504, 5096, 14872, 14872, 5096, 504, 8, 9, 744, 10332, 43992, 70070, 43992, 10332, 744, 9, 10, 1050, 19176, 112200, 260780, 260780, 112200, 19176, 1050, 10
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 01 2020

Keywords

Examples

			1,
2, 2,
3, 14, 3,
4, 44, 44, 4,
5, 100, 238, 100, 5,
6, 190, 828, 828, 190, 6,
7, 322, 2233, 4092, 2233, 322, 7
		

Crossrefs

2nd column=2*A002412.

Programs

  • Mathematica
    Table[Sum[Binomial[n + 1, 2 k + 1] Binomial[n - 2 k, m - k] (k + 1)*4^k, {k, 0, n} ], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 04 2020 *)
  • Maxima
    T(n,m):=((2*m*n+2*n-2*m^2+1)*binomial(2*n+2,2*m+1))/(4*n+2);

Formula

G.f.: (1/(1-x-x*y-4*x^2*y/(1-x-x*y)))^2.
T(n,m) = Sum_{k=0..n} C(n+1,2*k+1)*C(n-2*k,m-k)*(k+1)*4^k.
A045563(n) = (Sum_{m=0..n} T(n,m))/2^n.
Previous Showing 31-38 of 38 results.