cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A123373 a(n) = Sum_{i=1..n} (Sum_{j=1..n} prime(i)^prime(j)).

Original entry on oeis.org

4, 48, 3598, 924780, 287358579128, 339575512147572, 836406636653653232322, 2225332017808171682043720, 21158384827910606570843063431876, 2570789828135881020104992992114519012237948
Offset: 1

Views

Author

Alexander Adamchuk, Oct 12 2006

Keywords

Comments

p divides a(p-1) for prime p = {2, 3, 5, 23, 29, ...}.
All terms are even.
2^2 divides a(n) for n = {1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 21, 25, 26, 29, 30, 33, 37, 41, 45, 48, 49, 50, 52, ...}.
2^3 divides a(n) for n = {2, 5, 8, 12, 13, 16, 18, 21, 29, 37, 45, 48, 50, 52, 53, 58, 61, 64, 69, 76, 77, 85, 88, 93, 94, 98, ...}.
2^4 divides a(n) for n = {2, 12, 13, 18, 29, 45, 53, 58, 64, 76, 77, 93, 102, 109, 112, 125, 128, 133, 141, 149, 150, 157, 170, ...}.
2^5 divides a(n) for n = {12, 13, 18, 53, 58, 64, 77, 93, 102, 112, 141, 149, 150, 173, 178, 188, 190, 196, 205, 232, 234, 237, ...}.
2^6 divides a(n) for n = {13, 58, 64, 102, 150, 173, 178, 190, 205, 232, 234, 237, 245, 277, 285, 290, 325, 333, 382, 429, 434, ...}.
2^7 divides a(n) for n = {13, 58, 64, 150, 173, 178, 205, 234, 325, 382, 472, 573, 592, 596, 621, 628, 653, 757, 796, 893, 950, ...}.
2^8 divides a(n) for n = {13, 58, 64, 178, 205, 325, 382, 573, 653, 757, ...}.
2^9 divides a(n) for n = {13, 58, 64, 178, 325, 382, 653, 757, ...}.
2^10 divides a(n) for n = {64, 178, ...}.
2^11 divides a(n) for n = {64, 178, ...}.
2^12 divides a(n) for n = {178, ...}.

Crossrefs

Cf. A086787 (Sum_{i=1..n} (Sum_{j=1..n} i^j)), A122004.

Programs

  • Mathematica
    Table[Sum[Sum[Prime[i]^Prime[j],{i,1,n}],{j,1,n}],{n,1,13}]
  • PARI
    for(n=1,10, print1(sum(j=1,n, sum(k=1,n, (prime(k))^(prime(j)))), ", ")) \\ G. C. Greubel, Oct 25 2017
    
  • Python
    from sympy import prime
    def A123373(n): return sum(prime(i)**prime(j) for i in range(1,n+1) for j in range(1,n+1)) # Chai Wah Wu, Jan 08 2022

A124391 Numbers m that divide A123269(m) = Sum_{i=1..m, j=1..m, k=1..m} i^j^k.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 40, 42, 43, 44, 46, 47, 48, 49, 54, 56, 59, 60, 62, 63, 64, 66, 67, 69, 71, 72, 77, 79, 80, 81, 83, 84, 86, 88, 92, 93, 94, 96, 98, 99, 100, 103
Offset: 1

Views

Author

Alexander Adamchuk, Oct 30 2006

Keywords

Comments

A123269(m) = Sum_{i=1..m, j=1..m, k=1..m} i^j^k = {1, 28, 7625731729896, ...}.
Primes terms are listed in A039787.

Crossrefs

Programs

  • Mathematica
    Do[f=Sum[Mod[Sum[Mod[Sum[PowerMod[i,j^k,n], {i, 1, n}],n], {j, 1, n}],n], {k, 1, n}];If[IntegerQ[f/n],Print[n]],{n,1,103}]

A125227 A014741(n)/6 for n>2.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 49, 57, 63, 81, 147, 171, 189, 219, 243, 301, 343, 399, 441, 513, 567, 657, 729, 889, 903, 1029, 1083, 1197, 1323, 1533, 1539, 1701, 1971, 2107, 2187, 2359, 2401, 2667, 2709, 2793, 3087, 3249, 3591, 3969, 4161, 4401, 4599, 4617, 5103, 5913
Offset: 3

Views

Author

Alexander Adamchuk, Jan 15 2007

Keywords

Comments

A014741(n) is divisible by 6 for n>2.
All powers of 3 are terms. All powers of 7 are terms. The prime divisors of terms of this sequence (for n up to 10^6) in order of their first appearance are 3, 7, 19, 73, 43, 127, 337, 163, 379, 571, 5419, 487, 2593, 439, 1459, 431, 883.
The sequence is multiplicative in the sense that if two numbers k and m are terms, then k*m is too.

Examples

			a(3) = A014741(3)/6 = 6/6 = 1.
a(4) = A014741(4)/6 = 18/6 = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3,6000], PowerMod[2,#+1,# ]==2&]/6

Formula

a(n) = A014741(n)/6 = A014945(n-1)/3. - Max Alekseyev, Nov 14 2012

A122004 Primes p that divide A123373(p-1).

Original entry on oeis.org

2, 3, 5, 23, 29
Offset: 1

Views

Author

Alexander Adamchuk, Oct 14 2006

Keywords

Examples

			A123373 begins {4, 48, 3598, 924780, 287358579128, ...}.
a(1) = 2 because 2 divides A123373(1) = 4.
a(2) = 3 because 3 divides A123373(2) = 48.
a(3) = 5 because 5 divides A123373(4) = 924780.
		

Crossrefs

Programs

  • PARI
    is(p) = isprime(p) && sum(j=1, p-1, sum(k=1, p-1, Mod(prime(k), p)^prime(j))) == 0; \\ Jinyuan Wang, Jan 16 2021
    
  • Python
    from sympy import nextprime, prime
    p, A122004_list = 2, []
    while p < 10**6:
        if 0 == sum(pow(prime(i),prime(j),p) for i in range(1,p) for j in range(1,p)) % p:
            A122004_list.append(p)
        p = nextprime(p) # Chai Wah Wu, Feb 19 2021

A124403 a(n) = -1 + Sum_{i=1..n} Sum_{j=1..n} i^j.

Original entry on oeis.org

0, 7, 55, 493, 5698, 82199, 1419759, 28501115, 651233660, 16676686695, 472883843991, 14705395791305, 497538872883726, 18193397941038735, 714950006521386975, 30046260016074301943, 1344648068888240941016
Offset: 1

Views

Author

Alexander Adamchuk, Dec 14 2006

Keywords

Comments

p divides a(p-2) for prime p>2. p^k divides a(p^k-2) for prime p>2.

Crossrefs

Cf. A086787.

Programs

  • GAP
    List([1..30], n-> n-1 + Sum([2..n], j-> j*(j^n-1)/(j-1)) ); # G. C. Greubel, Dec 25 2019
  • Magma
    [0] cat [n-1 + (&+[j*(j^n-1)/(j-1): j in [2..n]]): n in [2..30]]; // G. C. Greubel, Dec 25 2019
    
  • Maple
    seq( n-1+add(j*(j^n-1)/(j-1), j=2..n), n=1..30); # G. C. Greubel, Dec 25 2019
  • Mathematica
    Table[Sum[i^j,{i,1,n},{j,1,n}]-1,{n,1,25}]
  • PARI
    vector(30, n, n-1 + sum(j=2,n, j*(j^n-1)/(j-1)) ) \\ G. C. Greubel, Dec 25 2019
    
  • Sage
    [n-1 + sum(j*(j^n-1)/(j-1) for j in (2..n)) for n in (1..30)] # G. C. Greubel, Dec 25 2019
    

Formula

a(n) = -1 + Sum_{i=1..n} Sum_{j=1..n} i^j.
a(n) = n - 1 + Sum_{j=2..n} j*(j^n - 1)/(j-1).
a(n) = A086787(n) - 1.

A133298 a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k).

Original entry on oeis.org

2, 41, 1727, 130917, 17245160, 3546873073, 1046002784253, 417182980579609, 215861313302976046, 140463714074395109081, 112191246261394235358555, 107867952671976721983260413, 122856922623618324408724634164
Offset: 1

Views

Author

Alexander Adamchuk, Oct 17 2007

Keywords

Comments

p divides a(p) for prime p>3. p^2 divides a(p) for prime p=7. Nonprime n dividing a(n) are {1,15}.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 1 + n^2 + Sum([2..n], j-> (j*(j^n-1)/(j-1))^2) ); # G. C. Greubel, Aug 02 2019
  • Magma
    [2] cat [1+n^2 + (&+[(j*(j^n-1)/(j-1))^2: j in [2..n]]): n in [1..20]]; // G. C. Greubel, Aug 02 2019
    
  • Mathematica
    Table[Sum[(i(i^n-1)/(i-1))^2, {i,2,n}] +n^2 +1,{n,20}]
  • PARI
    vector(20, n, 1+n^2 + sum(j=2,n, (j*(j^n-1)/(j-1))^2)) \\ G. C. Greubel, Aug 02 2019
    
  • Sage
    [1+n^2 + sum((j*(j^n-1)/(j-1))^2 for j in (2..n)) for n in (1..20)] # G. C. Greubel, Aug 02 2019
    

Formula

a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k).
a(n) = 1 + n^2 + Sum_{j=2..n} (j*(j^n - 1)/(j-1))^2.

A124045 Numbers n such that n^2 divide A123269(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].

Original entry on oeis.org

1, 2, 3, 6, 42
Offset: 1

Views

Author

Alexander Adamchuk, Nov 02 2006

Keywords

Comments

A123269(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ] = {1, 28, 7625731729896, ...}. Numbers n that divide A123269(n) are listed in A124391(n) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 40, 42, 43, ...}.

Crossrefs

Programs

  • Mathematica
    Do[f=Sum[Mod[Sum[Mod[Sum[PowerMod[i, j^k, n^2], {i, 1, n}], n^2], {j, 1, n}], n^2], {k, 1, n}]; If[IntegerQ[f/n^2], Print[n]], {n, 1, 103}]
Previous Showing 11-17 of 17 results.