cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A173064 a(n) = prime(n) - 5.

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 18, 24, 26, 32, 36, 38, 42, 48, 54, 56, 62, 66, 68, 74, 78, 84, 92, 96, 98, 102, 104, 108, 122, 126, 132, 134, 144, 146, 152, 158, 162, 168, 174, 176, 186, 188, 192, 194, 206, 218, 222, 224, 228, 234, 236, 246, 252, 258, 264, 266, 272, 276, 278, 288, 302, 306, 308, 312, 326, 332, 342, 344, 348, 354, 362, 368, 374, 378, 384, 392, 396, 404
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n) - 5: n in [3..100]]; // G. C. Greubel, May 19 2019
    
  • Mathematica
    Prime[Range[3,120]] - 5
  • PARI
    {a(n) = prime(n) - 5}; \\ G. C. Greubel, May 19 2019
    
  • Sage
    [nth_prime(n) - 5 for n in (3..100)] # G. C. Greubel, May 19 2019

A369657 a(n) = A356253(n) - A003415(n).

Original entry on oeis.org

1, 1, 2, 0, 4, 1, 6, 0, 3, 3, 10, 0, 12, 5, 7, 0, 16, 0, 18, 0, 11, 9, 22, 0, 15, 11, 0, 0, 28, 0, 30, 0, 19, 15, 23, 0, 36, 17, 23, 0, 40, 1, 42, 0, 6, 21, 46, 0, 35, 5, 31, 0, 52, 0, 39, 0, 35, 27, 58, 0, 60, 29, 12, 48, 47, 5, 66, 0, 43, 11, 70, 0, 72, 35, 20, 0, 59, 7, 78, 0, 0, 39, 82, 0, 63, 41, 55, 0, 88, 0, 71
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2024

Keywords

Comments

From M. F. Hasler, Feb 14 2024: (Start)
a(n) = 0 for most n divisible by 4, except n = 64, 96, 128, 144, 160, 192, 216, 224, 240, 256, ... These exceptions include all proper multiples of 32 but also some other multiples of 4: 9*16, 27*8, 15*16, 21*16, ...
a(n) = 0 also for some n not a multiple of 4, namely 18*(6k + 1) for all k >= 0 except 2604, 18229, 33854, ... and 27*(4k + 1) for k >= 0 different from 101, 182, 236, ..., and others.
a(n) = 48 for all numbers of the form 32*p where p is prime, and for n = 171. (Are there any others?) This is by far the most frequent nonzero value: it can be seen as a horizontal line in the graph of the sequence.
a(n) = 11 for n = 5*709, 2*2833, 2*37*83, 2*29*107, 2*23*137, 2*17*191, 2*11*317, 2*7*569, 2*5*947, 2*3*2837, 2*3*53*67, ... This appears to be the second most frequent nonzero value. (End)

Crossrefs

Programs

Formula

a(9*prime(n)) = 3*A086801(n) for n > 1. - Thomas Scheuerle, Feb 14 2024

A119981 a(n) = 1 iff number congruent to {2, 4} mod 6 is equal to prime minus 3, otherwise a(n)=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 03 2006

Keywords

Comments

a(n) = 1 iff A047235(n) + 3 = A086801(n).

Crossrefs

A144840 Numbers k such that the three numbers k-1, k+3 and k+5 are all prime.

Original entry on oeis.org

8, 14, 38, 68, 98, 104, 194, 224, 278, 308, 458, 614, 824, 854, 878, 1088, 1298, 1424, 1448, 1484, 1664, 1694, 1784, 1868, 1874, 1994, 2084, 2138, 2378, 2684, 2708, 2798, 3164, 3254, 3458, 3464, 3848, 4154, 4514, 4784, 5228, 5414, 5438, 5648, 5654, 5738
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 23 2008

Keywords

Crossrefs

Programs

  • Python
    from sympy import isprime
    def ok(n): return n > 4 and isprime(n-1) and isprime(n+3) and isprime(n+5)
    print(list(filter(ok, range(5739)))) # Michael S. Branicky, Aug 14 2021

Formula

a(n) = A022005(n) + 1. - R. J. Mathar, Sep 24 2008

Extensions

Definition edited and extended by R. J. Mathar, Sep 24 2008

A146538 Even numbers n such that n+3 is not a prime.

Original entry on oeis.org

6, 12, 18, 22, 24, 30, 32, 36, 42, 46, 48, 52, 54, 60, 62, 66, 72, 74, 78, 82, 84, 88, 90, 92, 96, 102, 108, 112, 114, 116, 118, 120, 122, 126, 130, 132, 138, 140, 142, 144, 150, 152, 156, 158, 162, 166, 168, 172, 174, 180, 182, 184, 186, 192, 198, 200, 202, 204, 206
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 31 2008

Keywords

Crossrefs

Cf. A086801.

Programs

  • Mathematica
    Select[2*Range[150],!PrimeQ[#+3]&] (* Harvey P. Dale, Oct 15 2012 *)

Extensions

54 and 66 inserted, 7274 split, 78 inserted, 176 removed by R. J. Mathar, Dec 04 2008

A177357 Number of positive squares <= prime(n) - 3.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19
Offset: 2

Views

Author

Giovanni Teofilatto, May 07 2010

Keywords

Crossrefs

Cf. A000006.

Programs

Formula

a(n) = A000196(A086801(n)). - R. J. Mathar, May 09 2010

Extensions

Edited by N. J. A. Sloane, May 08 2010
More terms from R. J. Mathar, May 09 2010
Reference redirected to a valid A-number by R. J. Mathar, May 09 2010

A370204 a(n) is the smallest number k for which the length of the central extent of width 0 in the symmetric representation of sigma, SRS(k), equals 2*n and is -1 if there is no such extent of length 2*n.

Original entry on oeis.org

3, 5, 7, 22, 11, 13, 34, 17, 19, 46, 23, 87, 58, 29, 31, 111, 74, 37, 82, 41, 43, 94, 47, 159, 106, 53, 177, 118, 59, 61, 201, 134, 67, 142, 71, 73, 237, 158, 79, 166, 83, 267, 178, 89, 388, 291, 194, 97, 202, 101, 103, 214, 107, 109, 226, 113, 889, 762, 635, 508, 381, 254, 127, 262, 131, 411
Offset: 0

Views

Author

Hartmut F. W. Hoft, Feb 11 2024

Keywords

Comments

Indices of the first occurrence of value 2*n in A368945.
SRS(a(n)) has an even number of parts.
The maximum possible central 0 width extent in SRS(n) for odd numbers n is 2*n - (n+1) - 2 = n - 3. This is achieved only by odd prime numbers which form a subsequence.
Conjecture: a(n) != -1 for all n >= 0.

Examples

			a(2) = 7 since prime 7 is the smallest number whose central extent of width 0 equals 4.
a(3) = 22 since 22 is the smallest number whose central extent of width 0 equals 6.
		

Crossrefs

Programs

  • Mathematica
    (* Function extent0[ ] is defined in A368945 *)
    smallest[n_] := NestWhile[#+1&, n, extent0[#]!=n&]/;EvenQ[n]
    a370204[n_] := Map[smallest[2#]&, Range[0, n]]
    a370204[65]

Formula

a(n) = min( k : A368945(k) = 2*n ), 0<=n, if the minimum exists, a(n) = -1 otherwise.
A368945(a(k)) = 2 * k, k>=0 and a(k) != -1.

A144206 Numbers A141427(k) such that the three numbers A141427(k) -/+ 3 and A141427(k) + 1 are all prime.

Original entry on oeis.org

10, 16, 40, 70, 100, 106, 196, 226, 280, 310, 460, 616, 826, 856, 880, 1090, 1300, 1426, 1450, 1486, 1666, 1696, 1786, 1870, 1876, 1996, 2086, 2140, 2380, 2686, 2710, 2800, 3166, 3256, 3460, 3466, 3850, 4156, 4516, 4786, 5230, 5416, 5440, 5650, 5656, 5740, 6550, 6826, 7210, 7756, 7876, 8290, 8626
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 14 2008

Keywords

Crossrefs

Extensions

Corrected definition and extended. - R. J. Mathar, Sep 18 2008
Corrected A-number typo in the definition. - R. J. Mathar, Oct 14 2008
Previous Showing 11-18 of 18 results.